FEM and ANN analyses of short and tall geosynthetic reinforced soil walls:Evaluation of various effective aspects and ASSHTO acceptable design methods  

在线阅读下载全文

作  者:Hamid Reza RAZEGHI Ali Akbar Heshmati RAFSANJANI Seyed Meisam ALAVI 

机构地区:[1]School of Civil Engineering,Iran University of Science and Technology,Tehran 13114-16846,Iran

出  处:《Frontiers of Structural and Civil Engineering》2024年第10期1576-1594,共19页结构与土木工程前沿(英文版)

摘  要:In addition to confined investigations on tall geosynthetic reinforced soil(GRS)walls,a remarkable database of such walls must be analyzed to diminish engineers’concerns regarding the American Association of State Highway and Transportation Officials(AASHTO)Simplified or Simplified Stiffness Method in projects.There are also uncertainties regarding reinforcement load distributions of GRS walls at the connections.Hence,the current study has implemented a combination of finite element method(FEM)and artificial neural network(ANN)to distinguish the performance of short and tall GRS walls and assess the AASHTO design methods based on 88 FEM and 10000 ANN models.There were conspicuous differences between the effectiveness of stiffness(63%),vertical spacing(22%),and length of reinforcements(14%)in the behavior of short and tall walls,along with predictions of geogrid load distributions.These differences illustrated that using the Simplified Method may exert profound repercussions because it does not consider wall height.Furthermore,the Simplified Stiffness Method(which incorporates wall height)predicted the reinforcement load distributions at backfill and connections well.Moreover,a Multilayer Perceptron(MLP)algorithm with a low average overall relative error(up to 2.8%)was developed to propose upper and lower limits of reinforcement load distributions,either at backfill or connections,based on 990000 ANN predictions.

关 键 词:GEOSYNTHETICS short and tall GRS walls artificial intelligence MLP AASHTO Simplified and Simplified Stiffness Methods 

分 类 号:TU476.4[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象