检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晓燕 王瑞[2] 楼锦娣 徐瑞琦 黄金连 春意 江涛 许家佗[1] ZHANG Xiaoyan;WANG Rui;LOU Jindi;XU Ruiqi;HUANG Jinlian;CHUN Yi;JIANG Tao;XU Jiatuo(School of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China;Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine,Shanghai 200071,China)
机构地区:[1]上海中医药大学中医学院,上海201203 [2]上海中医药大学附属市中医医院,上海200071
出 处:《中国中医药信息杂志》2024年第12期42-48,共7页Chinese Journal of Information on Traditional Chinese Medicine
基 金:国家重点研发计划-中医药现代化研究重点专项(2017YFC1703301);国家自然科学基金(82104738、81873235);中国博士后科学基金面上项目(2023M732337);上海市科委地方院校能力建设项目(21010504400);上海市“超级博士后”激励计划(2022509)。
摘 要:目的设计并构建一种融合中医面色诊断信息的辨证知识图谱,探讨知识间的隐性关系。方法文献数据来源于古籍经典、教材,以及中国知识资源总库(CNKI)、中文科技期刊数据库(VIP)、中国学术期刊数据库(万方数据)建库至2022年12月31日收录的望诊相关标准类文献。临床数据来源于2022年9月上海市嘉定工业区社区卫生服务中心进行中医健康体检的老年人30名,采用TFDA-1型数字舌、面诊仪进行面部图像采集。通过知识抽取、知识融合、质量评估等图谱构建步骤,在中医专家辅助判读基础上,采用Access2019集成定性的文字数据和定量的客观化图像数字信息,在Neo4j图数据库中设计完成融合中医面色诊的辨证知识图谱。同时,还设计一种将面色诊断知识从定性到定量的方法。结果知识图谱包含8种实体术语类型和12种实体术语标签下的194个节点、13种语义关系下的361条关系,在Neo4j图数据库中提供可视化的中医面色诊辨证知识图谱,可使用Cypher语言进行查询和反馈。结论基于中医面色诊理论构建的知识图谱,可视化地展示了面色诊与辨证诊断之间的复杂关联,形成图像特征定性数据→语义关系→辨证诊断形式的知识表示模式。Objective To design and construct a syndrome differentiation knowledge graph that integrates TCM facial color diagnosis information;To explore the hidden relationships between the knowledge.Methods The literature data came from ancient classics,textbooks,as well as standard literature related to inspection included in the CNKI,VIP and Wanfang Data from the establishment of the databases to December 31,2022.The clinical data was sourced from 30 elderly individuals who underwent TCM health examinations at the Community Health Service Center in Jiading Industrial Zone,Shanghai in September 2022.Facial image acquisition was performed using TFDA-1 digital tongue and facial diagnostic instrument.By following the steps of knowledge extraction,knowledge fusion and quality assessment to construct a graph,and with the assistance of TCM experts for interpretation,using Access 2019 to integrate qualitative textual data and quantitative objective image digital information,a syndrome differentiation knowledge graph integrating TCM facial diagnosis was designed and completed in the Neo4j graph database.In addition,a method was designed to shift facial diagnosis knowledge from qualitative to quantitative.Results There were a total of 194 nodes under 8 entity term types and 12 entity term labels,as well as 361 relationships under 13 semantic relationships in knowledge graph.The Neo4j graph database provided a visualized TCM facial color diagnosis and differentiation,which could be queried and fed back using Cypher language.Conclusion The knowledge graph constructed based on the theory of TCM facial color diagnosis visually shows the complex correlation between facial color diagnosis and syndrome differentiation diagnosis,with a knowledge representation model that forms qualitative data of image features→semantic relationships→syndrome differentiation diagnosis forms.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7