检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李敏之[1] 李转怀 Li Minzhi;Li Zhuanhuai(School of Electronic and Information Engineering,Lanzhou Jiaotong Universitry,Lanzhou 730070,China)
机构地区:[1]兰州交通大学电子与信息工程学院,兰州730070
出 处:《电子测量技术》2024年第15期101-108,共8页Electronic Measurement Technology
基 金:国家自然科学基金(61763023)项目资助。
摘 要:针对当前异构无线网络中切换算法考虑的服务质量指标较少,用户频繁切换愈加严重的问题,提出了基于主客观加权与改进的深度强化学习相结合的异构无线网络垂直切换方法。首先,提出了一种支持异构无线网络的软件定义网络架构;其次,提出了主客观加权相结合的属性加权算法;最后,将网络选择问题利用改进的Dueling-DQN方法解决。仿真结果表明,本文所提算法在不同用户类型网络下切换次数分别减少了11.25%,13.34%,18.76%,13.75%,吞吐量提升了16.64%。因此本文所提算法有效避免了乒乓切换,减少切换次数并且提升了吞吐量。In view of the fact that the network selection algorithm in the heterogeneous wireless network has few quality of service indicators,and the frequent switching of users is becoming more and more serious,In this paper,a vertical handover method for heterogeneous wireless networks based on subjective and objective weighting combined with improved deep reinforcement learning is proposed.Firstly,a software-defined network architecture supporting heterogeneous wireless networks was proposed;secondly,an attribute weighting algorithm combining subjective and objective weighting was proposed;finally,the network selection problem is solved by using Dueling-DQN.The simulation results show that the proposed algorithm reduces the number of switching times by 11.25%,13.34%,18.76%and 13.75%respectively under different user types of networks,and increases the throughput by 16.64%.Therefore,the algorithm proposed in this paper effectively avoids ping-pong switching,reduces the number of switching times and improves the throughput.
关 键 词:异构无线网络 软件定义网络 层次分析法 熵值法 深度Q学习
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30