检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐圣学[1] 谭立强 李从宏 严金晶 Muhammad Ehtsham Akram 赵金泽 Tang Shengxue;Tan Liqiang;Li Conghong;Yan Jinjing;Muhammad Ehtsham Akram;Zhao Jinze(State Key Laboratory of Reliability and Intelligence of Electrical Equipment,School of Electrical Engineering,Hebei University of Technology,Tianjin 300401,China;Nanjing Vocational University of Industry Technology,Nanjing 210023,China)
机构地区:[1]河北工业大学省部共建电工装备可靠性与智能化国家重点实验室,天津300401 [2]南京工业职业技术大学,南京210023
出 处:《电子测量与仪器学报》2024年第9期212-222,共11页Journal of Electronic Measurement and Instrumentation
基 金:河北省自然科学基金(E2021202068)项目资助。
摘 要:将人工智能技术应用到故障诊断领域可以实现电力设备的自动化、智能化诊断,提高诊断精度和效率。以单输入多输出的反激式开关电源为例,针对其因脆弱元件失效而引起的电路工作性能异常的问题,通过分析不同故障模式的信号特性和可分性,提出了融合输入电流和输出电压信息的非侵入式开关电源故障诊断方法。构建了由时域特征及频带小波包奇异熵特征组成的融合时频域信息的多维特征矢量,建立了故障特征与故障模式之间的映射关系。进而,提出了基于人工智能技术的深度神经网络(DNN)故障诊断方法,实时监测反激式开关电源的运行状态,并通过数据分析及时识别故障位置,对潜在故障进行预警。实验结果表明,所提出的方法对单故障和多故障模式均具有良好的诊断效果,诊断准确率可达97.9%,并且,在不同工况下,该方法均可表现出较高的诊断准确率和较强的抗干扰性能。The application of artificial intelligence technology to the field of fault diagnosis can realize the automation and intelligent diagnosis of power equipment and improve diagnosis accuracy and efficiency.Taking the single-input multiple-output flyback switching power supply as an example,for the problem of abnormal circuit performance caused by the failure of its fragile components,a non�intrusive switching power supply fault diagnosis method fusing the input current and output voltage information is proposed by analyzing the signal characteristics and divisibility of different fault modes.A multidimensional feature vector fusing time-frequency domain information consisting of time-domain features and frequency-band wavelet packet singular entropy features is constructed,and the mapping relationship between fault features and fault modes is established.Then,a deep neural network(DNN)fault diagnosis method based on artificial intelligence technology is proposed to monitor the operation status of the flyback switching power supply in real time,identify the fault location in time through data analysis,and provide early warning for potential faults.The experimental results show that the method proposed in this paper has a good diagnostic effect on both single-fault and multi-fault modes,the diagnostic accuracy can reach 97.9%,and the method can show high diagnostic accuracy and strong anti-interference performance under different working conditions.
关 键 词:人工智能 反激式开关电源 时域特征 小波包奇异熵 故障诊断 DNN辨识
分 类 号:TM13[电气工程—电工理论与新技术] TN86[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.102.106