检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李昭毅 孙虎元[1,2,4] 蔡振宇 孙立娟[1,2,4] LI Zhaoyi;SUN Huyuan;CAI Zhenyu;SUN Lijuan(Key Laboratory of Advanced Marine Materials,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China;Key Laboratory of Marine Environmental Corrosion and Bio-Fouling,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China;University of Chinese Academy of Sciences,Beijing 100049,China;Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China)
机构地区:[1]中国科学院海洋研究所海洋关键材料重点实验室,山东青岛266071 [2]中国科学院海洋研究所海洋环境腐蚀与生物污损重点实验室,山东青岛266071 [3]中国科学院大学,北京100049 [4]中国科学院海洋大科学研究中心,山东青岛266071
出 处:《海洋科学》2024年第8期17-28,共12页Marine Sciences
基 金:国家自然科学基金项目(41476067)。
摘 要:海洋工程用钢广泛应用于海洋资源开发;然而,在海洋环境中,由于海洋环境复杂,钢的腐蚀速度大幅加快。为了评估其使用寿命,需要准确地预测钢的腐蚀速率。挂片实验法费时费力,经验模型预测虽然可以快速预测,但因海洋中影响腐蚀的因素较多,准确度较差。本文介绍了一种机器学习方法,即反向传播(BP)神经网络金属腐蚀速率预测模型。本研究创新性地将Sine混沌映射与麻雀搜索优化算法(SSA)引入腐蚀速率预测模型中,并利用2022年采集到的海洋环境要素和腐蚀速率数据导入模型进行训练预测。结果表明,SSA-BP和Sine-SSA-BP神经网络金属腐蚀速率预测模型的误差远低于BP神经网络腐蚀速率预测模型。经过充分的训练和学习,当预测样本数量由5至30逐渐增加时,Sine-SSA-BP预测模型的平均MAPE值为3.5002%,SSA-BP模型的平均MAPE值为6.0900%。Steel is widely used in marine engineering for marine resource development.However,due to the com-plex marine environment,the corrosion rate of steel is significantly accelerated.Thus,accurately predicting the rate of steel corrosion is crucial to determining its service life.The hanging plate experimental method is cumbersome and tedious to perform.Moreover,as several elements influence corrosion,empirical models can make quick but often imprecise predictions.Herein,a back propagation(BP)neural network-based model for predicting metal cor-rosion rate—a machine learning technique—is presented.This study creatively incorporated the sparrow search optimization algorithm(SSA)and sine chaotic mapping into the model.The model was then trained using corrosion rate data from 2022 and the gathered elements of the maritime environment.The findings revealed that compared to the BP neural network models,the SSA-BP and Sine-SSA-BP neural network models have substantially smaller errors while predicting metal corrosion rates.Following adequate training and learning,as the number of predicted samples progressively rose from 5 to 30,the average mean absolute percentage error value of the Sine-SSA-BP prediction model was 3.5002%,and that of the SSA-BP model was 6.0900%.
关 键 词:海洋腐蚀 BP人工神经网络 麻雀搜索优化算法 预测精度
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80