检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐冲 汪凝 倪相生 XU Chong;WANG Ning;NI Xiangsheng(State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou 310000,Zhejiang Province,China)
机构地区:[1]国网浙江省电力有限公司,浙江省杭州市310000
出 处:《电力信息与通信技术》2024年第11期60-66,共7页Electric Power Information and Communication Technology
摘 要:电力安全教育中员工群体分布的长尾特征,导致采样到的用户交互数据具有明显的稀疏性,使用传统推荐算法无法获得理想的效果,为此文章提出了基于知识图谱的用户特征-关系推荐模型。建立一个基于多任务迁移学习的神经网络,通过引入F-R单元实现了用户特征与实体关系的深度聚合,能识别出对推荐有重要影响的“用户特征-实体关系”组合,并通过神经网络挖掘其内在作用规律,从而利用实体关系信息强化了用户特征对推荐算法的影响,显著提升了模型的预测性能。实验证明,本模型能够有效解决电力安全教育场景中‘长尾’群体用户交互数据的稀疏问题,明显缓解冷启动效应。In the context of power safety education,the long-tail distribution of the employee population leads to severe sparsity in the sampled user interaction data,having a negative impact on the performance of traditional recommendation algorithms.This paper proposes a User Feature-Relation Recommendation model based on knowledge graph.It establishes a multi-task transfer-learning neural network.By introducing the F-R unit,the model can identify crucial user feature-entity relation combinations and mine the inherent rules.By utilizing entity relationship information,it significantly improves the performance of the model.Experiments have shown that this model can effectively address the sparsity issue of user interaction data for the'long-tail'group in power safety education scenarios,significantly alleviating the cold start effect.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90