星载微波散射计海面风场反演研究进展  

Comprehensive review on sea surface wind field retrieval using spaceborne microwave scatterometer

在线阅读下载全文

作  者:解学通[1] 黎锦杰 张秦 黄家涛 陈梓灵 XIE Xue-tong;LI Jin-jie;ZHANG Qin;HUANG Jia-tao;CHEN Zi-ling(School of Geography and Remote Sensing,Guangzhou University,Guangzhou 510006,China)

机构地区:[1]广州大学地理科学与遥感学院,广东广州510006

出  处:《广州大学学报(自然科学版)》2024年第5期1-12,共12页Journal of Guangzhou University:Natural Science Edition

基  金:国家自然科学基金资助项目(41876204);广东省海洋经济发展专项资助项目(GDNRC[2020]013)。

摘  要:星载微波散射计以高时空分辨率、全天候的观测能力,能实现多波段、多极化、多视角的海面观测,成为大面积获取高分辨率海面风场的重要手段,是全球海面风场观测资料最主要的卫星传感器,对其进行研究有着重要的意义。文章以星载微波散射计对风速和风向的反演为主线,全面而系统地探讨了国内外学者在海面风场反演方法方面的研究进展,涵盖了地球物理模型函数的演化、模糊解去除方案的优化以及神经网络算法和深度学习在海面风场遥感中的应用。这些内容不仅为海面风场反演技术的进一步发展提供了重要参考,也为未来海洋遥感领域的研究和应用提供了新的思路。The spaceborne microwave scatterometer,characterized by its high spatiotemporal resolu-tion and all-weather observational capability,serves as a pivotal tool for observing the sea surface wind fields with multiple bands,polarizations,and viewing angles.It has emerged as a crucial means to acquire high-resolution sea surface wind field data over expansive regions,playing a central role as the primary satellite sensor for global sea surface wind field observations.Consequently,investigating its intricacies holds significant academic significance.This paper offers a comprehensive and systematic examination of the advancements made by scholars globally in the domain of sea surface wind field in-version methods.Emphasizing the evolution of geophysical model functions,the optimization of fuzzy solution removal schemes,and the application of neural network algorithms and deep learning in ocean remote sensing,it provides a nuanced exploration of this interdisciplinary field.By delving into these topics,this paper not only furnishes valuable insights for advancing sea surface wind field retrieval technology but also presents novel perspectives for future research and applications within the realm of ocean remote sensing.

关 键 词:微波散射计 风场反演算法 海面风场 

分 类 号:K909[历史地理—人文地理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象