检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦振华 QIN Zhenhua(Guangshui Power Supply Company,State Grid Hubei Electric Power Company,Guangshui 432720,Hubei Province,China)
机构地区:[1]国网湖北省电力有限公司广水市供电公司,湖北广水432720
出 处:《电力与能源》2024年第5期608-610,638,共4页Power & Energy
摘 要:新能源发电装机容量已成为我国电力系统的重要组成部分,并且持续增长。通过有效的市场机制可以促进电力系统对新能源的消纳容量,提高新能源发电的利用率,降低“弃风”和“弃光”概率。研究了分时竞价模式下新能源发电参与的日前市场出清模型,并通过基于Q学习的求解算法研究了日前市场出清模型的最优解。结果表明:所推导的日前市场出清模型,可提高发电厂的收益,同时降低发电成本与排放成本。The installed capacity of renewable energy generation has become a significant component of China's power system and continues to grow.Effective market mechanisms can enhance the capacity for absorbing renewable energy,further increasing its utilization and reducing curtailment rates for wind and solar power.This study investigates the day-ahead market clearing model under a time-based bidding scheme with renewable energy participation.By applying Q-learning algorithms to solve the day-ahead market clearing model,the study derives optimal solutions that demonstrate potential improvements in power plant revenues and reductions in generation and emission costs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.5