融合边缘计算技术与数据挖掘的大气污染物监测研究  

Atmospheric Pollutant Monitoring by Integrating Edge Computing Technology and Data Mining

在线阅读下载全文

作  者:魏运芳 慕秀香 曹满 何佳融[4] Wei Yunfang;Mu Xiuxiang;Cao Man;He Jiarong(Jilin Province Meteorological Detection Support Center(Jilin Province Meteorological Instrument Calibration and Testing Station),Changchun 130062,China;Changchun Meteorological Service,Changchun 130051,China;Jilin Province Emergency Warning Information Release Center,Changchun 130062,China;Jilin Institute of Metrology and Research(Jilin Provincial Key Laboratory of Metrology and Testing Instruments and Technology),Changchun 130012,China)

机构地区:[1]吉林省气象探测保障中心(吉林省气象仪器计量检定站),吉林长春130062 [2]长春市气象局,吉林长春130051 [3]吉林省突发事件预警信息发布中心,吉林长春130062 [4]吉林省计量科学研究院(吉林省计量测试仪器与技术重点实验室),吉林长春130012

出  处:《环境科学与管理》2024年第11期130-135,共6页Environmental Science and Management

摘  要:随着城市化进程的加快,大气污染物的监测至关重要。研究引入了边缘计算技术进行施工现场的大气污染物监测。同时采用优化的数据挖掘技术,即长短期记忆-自回归整合移动平均模型(Long Short-Term Memory-Auto Regressive Integrated Moving Average Model,LSTM-ARIMA)进行大气污染监测。结果显示,采用边缘计算监测的PM 10浓度变化曲线与实际浓度变化曲线最吻合,监测的最大浓度偏差值仅为2.54μg/m 3。LSTM-ARIMA模型在均方误差最低,最大值仅为3.57,平均值仅为2.08。说明研究所提出的大气污染物监测方案具有显著的应用效果,为环境保护部门提供更有效的决策支持。Monitoring of air pollutants is crucial as urbanization increases.The study introduces edge computing technology for monitoring air pollutants at construction sites.The optimized data mining technique,Long Short-Term Memory-Auto Regressive Integrated Moving Average Model(LSTM-ARIMA),was also used for air pollution monitoring.The results show that the variation curve of PM 10 monitored by the edge calculation is the most consistent with the actual concentration variation curve,and the maximum deviation value of the monitored concentration is only 2.54μg/m 3.The LSTM-ARIMA model has the lowest mean square error,and the maximum value is only 3.57,and the average value is only 2.08,which indicates that the proposed air pollutant monitoring scheme of the study has significant application effects.The results can provide a more effective decision-making method for the environmental protection department.environmental protection departments to provide more effective decision support.

关 键 词:大气污染 监测技术 边缘计算 数据挖掘 

分 类 号:X831[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象