检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王波 曹永峰 Wang Bo;Cao Yongfeng(Methanol Branch of Ningxia Coal Industry Co.,Ltd.,National Energy Group,Gansu,750411)
机构地区:[1]国家能源集团宁夏煤业有限责任公司甲醇分公司,甘肃750411
出 处:《当代化工研究》2024年第20期125-127,共3页Modern Chemical Research
摘 要:研究针对火力发电企业输煤栈桥环境复杂、传统人工巡检方式效率低、安全隐患大等问题,提出了一种基于挂轨式巡检机器人的智能化解决方案。通过引入图像识别、红外成像及深度学习技术,能够实现全天候、不间断巡检,并显著提高故障预警的准确性和及时性。实验证明,该系统有效提升了巡检效率,降低了设备故障率,减少了人工操作风险,为煤炭输送系统的智能化升级提供了有力支持。The research addressed the issues of complex environments,low efficiency of traditional manual inspection methods,and significant safety risks in the coal conveyor trestles of thermal power plants.It proposed an intelligent solution based on a rail-mounted inspection robot.By incorporating image recognition,infrared imaging,and deep learning technologies,the system was able to achieve continuous,round-the-clock inspections and significantly improve the accuracy and timeliness of fault warnings.Experimental results demonstrated that the system effectively enhanced inspection efficiency,reduced equipment failure rates,and minimized operational risks,providing strong support for the intelligent upgrade of coal transportation systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171