Prediction of spatial heterogeneity in nutrient-limited sub-tropical maize yield:Implications for precision management in the eastern Indo-Gangetic Plains  

在线阅读下载全文

作  者:Zia Uddin Ahmed Timothy J.Krupnik Jagadish Timsinab Saiful Islam Khaled Hossain A.S.M.Alanuzzaman Kurishi Shah-Al Emran M.Harun-Ar-Rashid Andrew J.McDonald Mahesh K.Gathala 

机构地区:[1]University at Buffalo,New York,USA [2]International Maize and Wheat Improvement Center,Dhaka 1213,Bangladesh [3]Global Ever Greening Alliance,1 Vision Drive,Burwood East,Melbourne,Australia [4]Department of Crop Sciences,University of Illinois at Urbana-Champaign,Urbana,IL,USA [5]SAARC Agriculture Centre,Dhaka,Bangladesh [6]Cornell University,School of Integrative Plant Science Soil and Crop Sciences Section,NY,USA

出  处:《Artificial Intelligence in Agriculture》2024年第3期100-116,共17页农业人工智能(英文)

摘  要:Knowledge of the factors influencing nutrient-limited subtropical maize yield and subsequent prediction is crucial for effective nutrientmanagement,maximizing profitability,ensuring food security,and promoting environmental sustainability.Weanalyzed data fromnutrient omission plot trials(NOPTs)conducted in 324 farmers'fields across ten agroecological zones(AEZs)in the Eastern Indo-Gangetic Plains(EIGP)of Bangladesh to explain maize yield variability and identify variables controlling nutrient-limited yields.An additive main effect and multiplicative interaction(AMMI)model was used to explain maize yield variability with nutrient addition.Interpretable machine learning(ML)algorithms in automatic machine learning(AutoML)frameworks were subsequently used to predict attainable yield relative nutrient-limited yield(RY)and to rank variables that control RY.The stack-ensemble model was identified as the best-performing model for predicting RYs of N,P,and Zn.In contrast,deep learning outperformed all base learners for predicting RYK.The best model's square errors(RMSEs)were 0.122,0.105,0.123,and 0.104 for RY_(N),RY_(P),RY_(K),and RY_(Zn),respectively.The permutation-based feature importance technique identified soil pH as the most critical variable controlling RY_(N)and RY_(P).The RY_(K)showed lower in the eastern longitudinal direction.Soil N and Zn were associated with RYZn.The predicted median RY of N,P,K,and Zn,representing average soil fertility,was 0.51,0.84,0.87,and 0.97,accounting for 44,54,54,and 48%upland dry season crop area of Bangladesh,respectively.Efforts are needed to update databases cataloging variability in land type inundation classes,soil characteristics,and INS and combine them with farmers'crop management information to develop more precise nutrient guidelines for maize in the EIGP.

关 键 词:Relative yield Additive Main effect and multiplicative interaction (AMMI) Quantile regression autoML Stack-ensemble Partial dependency plots 

分 类 号:S513[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象