检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Feng Wang Qi He Shicheng Li
机构地区:[1]School of Computer Science,Wuhan University,Wuhan 430072,China
出 处:《Tsinghua Science and Technology》2024年第5期1266-1282,共17页清华大学学报自然科学版(英文版)
基 金:supported by the National Natural Science Foundation of China(Nos.62173258 and 61773296).
摘 要:Combinatorial Optimization Problems(COPs)are a class of optimization problems that are commonly encountered in industrial production and everyday life.Over the last few decades,traditional algorithms,such as exact algorithms,approximate algorithms,and heuristic algorithms,have been proposed to solve COPs.However,as COPs in the real world become more complex,traditional algorithms struggle to generate optimal solutions in a limited amount of time.Since Deep Neural Networks(DNNs)are not heavily dependent on expert knowledge and are adequately flexible for generalization to various COPs,several DNN-based algorithms have been proposed in the last ten years for solving COPs.Herein,we categorize these algorithms into four classes and provide a brief overview of their applications in real-world problems.
关 键 词:Combinatorial Optimization Problem(COPs) pointer network Transformer Graph Neural Network(GNN) Reinforcement Learning(RL)
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.134.62