检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xi Chen Quan Cheng
机构地区:[1]School of Economics and Management,Fuzhou University,Fuzhou 350108,China
出 处:《Tsinghua Science and Technology》2024年第5期1509-1523,共15页清华大学学报自然科学版(英文版)
基 金:supported by the Social Science Fund of China(No.19BTQ072).
摘 要:Acute complication prediction model is of great importance for the overall reduction of premature death in chronic diseases.The CLSTM-BPR proposed in this paper aims to improve the accuracy,interpretability,and generalizability of the existing disease prediction models.Firstly,through its complex neural network structure,CLSTM-BPR considers both disease commonality and patient characteristics in the prediction process.Secondly,by splicing the time series prediction algorithm and classifier,the judgment basis is given along with the prediction results.Finally,this model introduces the pairwise algorithm Bayesian Personalized Ranking(BPR)into the medical field for the first time,and achieves a good result in the diagnosis of six acute complications.Experiments on the Medical Information Mart for Intensive Care IV(MIMIC-IV)dataset show that the average Mean Absolute Error(MAE)of biomarker value prediction of the CLSTM-BPR model is 0.26,and the average accuracy(ACC)of the CLSTM-BPR model for acute complication diagnosis is 92.5%.Comparison experiments and ablation experiments further demonstrate the reliability of CLSTM-BPR in the prediction of acute complication,which is an advancement of current disease prediction tools.
关 键 词:Long Short-Term Memory(LSTM) Bayesian Personalized Ranking(BPR) sudden illnesses disease predictions
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.186.244