检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shuangshuang Wu Zhiming Li Wenbai Chen Fuchun Sun
机构地区:[1]School of Automation,Beijing Information Science and Technology University,Beijing 100192,China [2]Department of Computer Science and Technology,Tsinghua University,Beijing 100084,China
出 处:《Tsinghua Science and Technology》2024年第5期1604-1614,共11页清华大学学报自然科学版(英文版)
基 金:supported by the National Natural Science Foundation of China(No.62276028);Major Research Plan of the National Natural Science Foundation of China(No.92267110);Beijing Municipal Natural Science Foundation—Xiaomi Joint Innovation Fund(No.L233006);Beijing Information Science and Technology University School Research Fund(No.2023XJJ12).
摘 要:Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research focus.Recent physics-enforced networks,exemplified by Hamiltonian neural networks and Lagrangian neural networks,demonstrate proficiency in modeling ideal physical systems,but face limitations when applied to systems with uncertain non-conservative dynamics due to the inherent constraints of the conservation laws foundation.In this paper,we present a novel augmented deep Lagrangian network,which seamlessly integrates a deep Lagrangian network with a standard deep network.This fusion aims to effectively model uncertainties that surpass the limitations of conventional Lagrangian mechanics.The proposed network is applied to learn inverse dynamics model of two multi-degree manipulators including a 6-dof UR-5 robot and a 7-dof SARCOS manipulator under uncertainties.The experimental results clearly demonstrate that our approach exhibits superior modeling precision and enhanced physical credibility.
关 键 词:deep Lagrangian network nonconservative dynamics multi-degree manipulator inverse dynamic modeling
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.182.75