Dynamic Modeling of Robotic Manipulator via an Augmented Deep Lagrangian Network  

在线阅读下载全文

作  者:Shuangshuang Wu Zhiming Li Wenbai Chen Fuchun Sun 

机构地区:[1]School of Automation,Beijing Information Science and Technology University,Beijing 100192,China [2]Department of Computer Science and Technology,Tsinghua University,Beijing 100084,China

出  处:《Tsinghua Science and Technology》2024年第5期1604-1614,共11页清华大学学报自然科学版(英文版)

基  金:supported by the National Natural Science Foundation of China(No.62276028);Major Research Plan of the National Natural Science Foundation of China(No.92267110);Beijing Municipal Natural Science Foundation—Xiaomi Joint Innovation Fund(No.L233006);Beijing Information Science and Technology University School Research Fund(No.2023XJJ12).

摘  要:Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research focus.Recent physics-enforced networks,exemplified by Hamiltonian neural networks and Lagrangian neural networks,demonstrate proficiency in modeling ideal physical systems,but face limitations when applied to systems with uncertain non-conservative dynamics due to the inherent constraints of the conservation laws foundation.In this paper,we present a novel augmented deep Lagrangian network,which seamlessly integrates a deep Lagrangian network with a standard deep network.This fusion aims to effectively model uncertainties that surpass the limitations of conventional Lagrangian mechanics.The proposed network is applied to learn inverse dynamics model of two multi-degree manipulators including a 6-dof UR-5 robot and a 7-dof SARCOS manipulator under uncertainties.The experimental results clearly demonstrate that our approach exhibits superior modeling precision and enhanced physical credibility.

关 键 词:deep Lagrangian network nonconservative dynamics multi-degree manipulator inverse dynamic modeling 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] TP18[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象