贵州省HIV感染/AIDS低病毒血症患者生存状况及影响因素分析  

Survival status and factors influencing survival of HIV/AIDS patients with low-level viremia in Guizhou Province

在线阅读下载全文

作  者:查鑫灵 姚永明[2] 黄璐[2] 宋晓甜 王茂思 汪俊华[1] 陈洋 ZHA Xinling;YAO Yongming;HUANG Lu;SONG Xiaotian;WANG Maosi;WANG Junhua;CHEN Yang(School of Public Health,the Key Laboratory of Environmental Pollution Monitoring and Disease Control,Ministry of Education,Guizhou Medical University,Guian New Area,Guizhou 561113,China;Guizhou Provincial Center for Disease Control and Prevention,Institute for Prevention and Control of AIDS,Sexually Transmitted Diseases,and Skin Diseases,Guiyang,Guizhou 550004,China)

机构地区:[1]贵州医科大学公共卫生与健康学院,环境污染与疾病监控教育部重点实验室,贵州贵安561113 [2]贵州省疾病预防控制中心,艾滋病性病皮肤病防治研究所,贵州贵阳550004

出  处:《中国热带医学》2024年第10期1273-1278,共6页China Tropical Medicine

基  金:贵州省卫生健康委科学技术基金项目(No.Gzwkj2024-501)。

摘  要:目的了解贵州省2016—2022年人类免疫缺陷病毒感染者/艾滋病患者(human immunodeficiency virus/ac⁃quired immunodeficiency syndrome,HIV/AIDS)接受抗病毒治疗后发生低病毒血症(low-level viremia,LLV)的生存状况及影响因素。方法从中国艾滋病综合防治信息系统下载贵州省2016—2022年HIV/AIDS患者的历史卡片,对数据资料采用回顾性队列研究的方法,应用寿命表法计算生存率,采用Kaplan-Meier法绘制生存曲线;Cox回归模型分析生存时间的影响因素。结果共纳入LLV患者12240例,其中死亡854例。病例观察时间范围为0.50~6.92年,M(P_(25),P_(75))为3.75(2.42,5.00)年,接受抗病毒治疗后第1、2、3、6年的累积生存率分别是99.11%、97.00%、94.36%、85.27%。多因素Cox回归模型分析结果显示:性别为男性、婚姻为未婚(aHR:1.640,95%CI:1.243~2.163)、离异丧偶及不详(aHR:1.193,95%CI:1.031~1.381)、民族为布依族(aHR:1.625,95%CI:1.310~2.015)、文盲、异性传播、基线WHO临床分期为Ⅳ期(aHR:1.596,95%CI:1.322~1.927)、基线CD4+T淋巴细胞<200个/uL、初始治疗方案为二线方案(aHR:1.835,95%CI:1.208~2.786)、抗反转录病毒治疗开始时年龄为≥40岁(aHR:1.498,95%CI:1.035~2.168)和≥50岁(aHR:3.514,95%CI:2.468~5.003)、确诊到治疗时间为≥1年(aHR:1.310,95%CI:1.009~1.702)、无复方新诺明服用史、高水平LLV(high level LLV,HLLV)400~999 copies/mL(aHR:1.446,95%CI:1.228~1.702)、只发生1次或间隔发生多次LLV(intermittent low-lev⁃el viremia,iLLV)是LLV患者发生死亡的危险因素。结论低病毒血症患者生存时间的影响因素较多,应高度重视并综合考虑各影响因素制定治疗和随访管理措施,改善患者生存质量。Objective To understand the survival status and influencing factors of HIV/AIDS patients who developed low-level viremia(LLV)after receiving antiretroviral therapy in Guizhou Province from 2016 to 2022.Methods Historical records of HIV/AIDS patients in Guizhou Province were downloaded from the China AIDS Comprehensive Prevention and Treatment Information System.The retrospective cohort method was used to calculate the survival rate usingthe life table method,and the Kaplan-Meier method was used to draw the survival curve.The Cox proportional risk regression model was used to analyze the factors affecting survival time.Results A total of 12240 patients with LLV were included,among which 854 had died.The observation time range of cases was 0.5-6.92 years,with the M(P_(25),P_(75))years of 3.75(2.42,5.00)years.The cumulative survival rates at 1,2,3,and 6 years after receiving antiviral treatment were 99.11%,97.00%,94.36%,and 85.27%,respectively.The multivariate Cox proportional risk model analysis showed the risk factors for mortality among LLV patients included being male,unmarried(aHR:1.640,95%CI:1.243-2.163),divorced or widowed and unknown(aHR:1.193,95%CI:1.031-1.381),being of the Buyi ethnicity(aHR:1.625,95%CI:1.310-2.015),illiteracy,heterosexual transmission,baseline WHO clinical stageⅣ(aHR:1.596,95%CI:1.322-1.927),baseline CD4+T lymphocytes<200 cells/μL,initial treatment regimen being a second-line treatment regimen(aHR:1.835,95%CI:1.208-2.786),age≥40 years(aHR:1.498,95%CI:1.035-2.168)and≥50 years(aHR:3.514,95%CI:2.468-5.003)at the beginning of ART,time from diagnosis to treatment≥1 year(aHR:1.310,95%CI:1.009-1.702)years,absence of compound sulfamethoxazole usage history,high-level LLV(HLLV)400-999 copies/mL(aHR:1.446,95%CI:1.228-1.702),and experiencing LLV only once or intermittently(intermittent low-level viremia,iLLV).Conclusions There are many factors affecting the survival time of patients with low-level viremia.High attention should be paid and comprehensive consideration should be given to formu

关 键 词:人类免疫缺陷病毒感染者/艾滋病患者 低病毒血症 生存率 生存分析 影响因素 

分 类 号:R512.91[医药卫生—内科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象