检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨心悦 温志波[1] YANG Xinyue;WEN Zhibo(Department of Radiology,Zhujiang Hospital,Southern Medical University,Guangzhou 510280,China)
机构地区:[1]南方医科大学珠江医院影像诊断科,广州510280
出 处:《磁共振成像》2024年第10期205-210,共6页Chinese Journal of Magnetic Resonance Imaging
基 金:国家自然科学基金(编号:82302128)。
摘 要:直肠癌是常见的消化系统恶性肿瘤,转移方式以淋巴转移为主,淋巴结转移决定治疗方案及疾病预后。目前评价直肠癌淋巴结转移主要依赖高分辨MRI,但基于MRI形态学诊断淋巴结转移的主观性强,诊断结果无法完全一致。人工智能(artificial intelligence,AI)能够深度挖掘医学图像的定量信息,为评估直肠癌淋巴结转移提供了新的途径。本文总结了近年来基于MRI的AI评估直肠癌治疗前和新辅助治疗后淋巴结转移的研究进展,并进行小结和展望,以期帮助读者了解基于直肠癌MRI评估淋巴结转移的AI研究存在回顾性研究多、数据集规模不一、模型效能参差的局限,为未来设计前瞻性、多中心、大数据的AI研究提供参考。Rectal cancer is one of the most common malignancies in the digestive tract.Cancer cells usually disseminate from rectal tumors to distant sites via lymphatic vessels.Thus,lymph node involvement,which influences treatment and prognosis,plays a crucial role in patients with rectal cancer.High resolution MRI has been used to estimate lymph node metastasis in rectal cancer.However,the morphological criteria were influenced by the subjective judgement of different observers.Artificial intelligence(AI)can mine and learn quantitative features from medical images,thus providing a new method for us to distinguish metastatic lymph nodes.In this review,we summarize the research progress of MRI-based AI in the evaluation of nodal metastasis with rectal cancer before and after the neoadjuvant chemoradiotherapy.We further discuss the challenges and provide prospects of AI research to help researchers understand the limitations of MRI-based AI in evaluation of nodal involvement in rectal cancer and offer guidance for future prospective,multi-center,big-data AI research.
分 类 号:R445.2[医药卫生—影像医学与核医学] R735.37[医药卫生—诊断学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33