基于知识图谱与深度学习的零件机加工艺设计方法  

Effective machining process planning method based on knowledge graph and deep learning

在线阅读下载全文

作  者:李建勋[1] 屈亚宁[1] 邱慧慧[1] 刘斌 李龙传 张金龙 魏亮 LI Jianxun;QU Yaning;QIU Huihui;LIU Bin;LI Longchuan;ZHANG Jinlong;WEI Liang(Shandong Hoteam Software Co.,Ltd.,Jinan 250101,China;School of Mechanical Engineering,Shandong University,Jinan 250101,China)

机构地区:[1]山东山大华天软件有限公司,山东济南250101 [2]山东大学机械工程学院,山东济南250101

出  处:《计算机集成制造系统》2024年第11期3850-3865,共16页Computer Integrated Manufacturing Systems

基  金:山东省自然科学基金资助项目(ZR2020ME139);四川省重大科技专项资助项目(2022ZDZX0010)。

摘  要:随着数字化制造系统的广泛应用,制造类企业产生的工艺数据数量持续增多。为了实现对已有工艺数据的有效复用、学习和挖掘,提出一种基于知识图谱与深度学习的零件机加工艺设计方法。首先构建以特征、零件、特征工步方案、零件工艺为基础的工艺知识图谱模型,实现工艺数据的结构化多层次表示。在此基础上,构建一种BiLSTM+Attention深度学习模型揭示零件与典型工艺方案之间的映射模式,以及一种Seq2Seq+Attention的深度学习模型实现零件工序序列的有效生成。其次,提出一种基于特征工步方案与零件工序方案融合概率的零件工艺方案决策方法,实现具有完整工艺情境的零件工艺方案有效生成。最后,以销轴类零件为例,开发原型系统验证了所提方法的有效性。With the widespread application of digital manufacturing systems,the amount of process data generated by manufacturing companies has been continuously increasing.To achieve effective reuse,learning and mining of existing process data,a knowledge graph and deep learning-based approach for part machining process design was proposed.A process knowledge graph model based on features,parts,feature process plan and part processes was constructed to achieve a structured multi-level representation of process data.On this basis,a BiLSTM+Attention deep learning model was developed to reveal the mapping patterns between parts and typical process plans,and a Seq2Seq+Attention deep learning model was developed to generate effective sequences of part process steps.A part process reasoning method based on the fusion probability of feature process plans and macro process sequences of parts was proposed,achieving effective generation of part process plans with complete process context.Finally,a prototype system was developed and validated using pin parts as an example to demonstrate the effectiveness of the proposed approach.

关 键 词:工艺数据 工艺设计 知识图谱 深度学习 融合 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术] TP18[自动化与计算机技术—计算机科学与技术] TH161.1[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象