机构地区:[1]Engineering Science and Mechanics Department,Penn State University,University Park,PA,16802,USA [2]The Huck Institutes of the Life Sciences,Penn State University,University Park,PA,16802,USA [3]Department of Surgery,College of Medicine,Penn State University,Hershey,PA,17033,USA [4]School of Mechanical Engineering and Automation,Harbin Institute of Technology,Shenzhen,518055,China [5]School of Molecular Biosciences,College of Veterinary Medicine,Washington State University,Pullman,WA,99164,USA [6]Department of Biomedical Engineering,Penn State University,University Park,PA,16802,USA [7]Materials Research Institute,Penn State University,University Park,PA,16802,USA [8]Department of Neurosurgery,Pennsylvania State College of Medicine,Hershey,PA,17033,USA [9]Penn State Cancer Institute,Penn State University,Hershey,PA,17033,USA [10]Department of Medical Oncology,Cukurova University,Adan1,01130,Turkey
出 处:《Bioactive Materials》2024年第3期114-128,共15页生物活性材料(英文)
基 金:supported by National Institutes of Health Award R01DE028614,R56HL157190,R21AR082668,and R01AR078743,and 2236 CoCirculation2 of TUBITAK award 121C359.
摘 要:Craniomaxillofacial(CMF)reconstruction is a challenging clinical dilemma.It often necessitates skin replacement in the form of autologous graft or flap surgery,which differ from one another based on hypodermal/dermal content.Unfortunately,both approaches are plagued by scarring,poor cosmesis,inadequate restoration of native anatomy and hair,alopecia,donor site morbidity,and potential for failure.Therefore,new reconstructive approaches are warranted,and tissue engineered skin represents an exciting alternative.In this study,we demonstrated the reconstruction of CMF full-thickness skin defects using intraoperative bioprinting(IOB),which enabled the repair of defects via direct bioprinting of multiple layers of skin on immunodeficient rats in a surgical setting.Using a newly formulated patient-sourced allogenic bioink consisting of both human adipose-derived extracellular matrix(adECM)and stem cells(ADSCs),skin loss was reconstructed by precise deposition of the hypodermal and dermal components under three different sets of animal studies.adECM,even at a very low concentration such as 2%or less,has shown to be bioprintable via droplet-based bioprinting and exhibited de novo adipogenic capabilities both in vitro and in vivo.Our findings demonstrate that the combinatorial delivery of adECM and ADSCs facilitated the reconstruction of three full-thickness skin defects,accomplishing near-complete wound closure within two weeks.More importantly,both hypodermal adipogenesis and downgrowth of hair follicle-like structures were achieved in this two-week time frame.Our approach illustrates the translational potential of using human-derived materials and IOB technologies for full-thickness skin loss.
关 键 词:Intraoperative bioprinting Adipose-derived extracellular matrix Adipose-derived stem cells Skin tissue engineering
分 类 号:R329.2[医药卫生—人体解剖和组织胚胎学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...