检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LUO Runjia ZHOU Guoquan 润嘉;周国全(南京大学物理学院,江苏南京210023;武汉大学物理科学与技术学院,湖北武汉430072)
机构地区:[1]School of Physics,Nanjing University,Nanjing 210023,Jiangsu,China [2]School of Physics and Technology,Wuhan University,Wuhan 430072,Hubei,China
出 处:《Wuhan University Journal of Natural Sciences》2024年第5期430-438,共9页武汉大学学报(自然科学英文版)
基 金:Supported by the National Natural Science Foundation of China (12074295)。
摘 要:Hirota method is applied to solve the modified nonlinear Schrodinger equation/the derivative nonlinear Schrodinger equation(MNLSE/DNLSE) under nonvanishing boundary conditions(NVBC) and lead to a single and double-pole soliton solution in an explicit form. The general procedures of Hirota method are presented, as well as the limit approach of constructing a soliton-antisoliton pair of equal amplitude with a particular chirp. The evolution figures of these soliton solutions are displayed and analyzed. The influence of the perturbation term and background oscillation strength upon the DPS is also discussed.本文运用Hirota方法求解非零边界条件下的修正的非线性薛定谔方程与导数非线性薛定谔方程(MNLSE/DNLSE)的显式的单极点与双极点孤子解,阐述了Hirota方法求解方程的一般过程以及通过参数极限求得孤子-反孤子对的方法,并分析了解的时空演化图和微扰项、背景振动幅度对解的影响。
关 键 词:nonlinear partial differential equation integrable system Hirota's bilinear derivative method soliton solution the derivative Schrodinger equation nonlinear optics
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.73.81