聚合物基复合材料用预处理秸秆纤维的研究进展  

Research progress of pretreated straw fibers for the fabrication of composites with a polymer matrix

在线阅读下载全文

作  者:赵飞阳 向双飞 赵叔军 付飞亚[1] 刘向东[1] ZHAO Feiyang;XIANG Shuangfei;ZHAO Shujun;FU Feiya;LIU Xiangdong(School of Materials Science&Engineering,Zhejiang Sci-Tech University,Hangzhou 310018,China;Zhejiang Provincial Innovation Center of Advanced Textile Technology,Shaoxing 312030,China)

机构地区:[1]浙江理工大学材料科学与工程学院,杭州310018 [2]浙江省现代纺织技术创新中心,浙江绍兴312030

出  处:《浙江理工大学学报(自然科学版)》2024年第6期809-819,共11页Journal of Zhejiang Sci-Tech University(Natural Sciences)

基  金:国家重点研发计划资助(2023YFE0106400)。

摘  要:近年来,秸秆纤维在生物基复合材料的研发中备受关注。秸秆纤维具有丰富的物产资源和广阔的应用前景,但纤维表面含有大量羟基,与非极性聚合物基体的复合界面相容性较弱,导致其复合材料整体性能不佳。该文详细综述了秸秆纤维预处理的方法,包括物理法、化学法、生物法、物理化学联合法和其他预处理法,讨论了秸秆预处理方法对聚合物基复合材料性能的影响,比较了不同秸秆预处理技术的优缺点及应用前景,在此基础上对秸秆纤维预处理研究进行了展望,以期为新型复合材料的设计和开发提供参考。In recent years,straw fibers have attracted much attention in the development of bio-based composites.Straw fibers have abundant resources and broad prospects for application,but due to the large number of hydroxyl groups on the surface,their interfacial compatibility with nonpolar polymer matrices is weak,resulting in poor overall performance of the composites.In this paper,the existing pretreatment methods of straw fibers were reviewed,including the physical method,chemical method,biological method,physical-chemical combination method and other pretreatment methods.The effects of straw pretreatment methods on the properties of polymer matrix composites were discussed.Moreover,a comparison was conducted on the merits and demerits of different pretreatment technologies,as well as their prospects for application.On this basis,an outlook was made for straw fiber pretreatment research,with a view to providing reference for the design and development of new composite materials.

关 键 词:秸秆纤维 聚合物基复合材料 预处理 表面改性 界面相容性 

分 类 号:TB33[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象