启发式优化算法及其在汽车零部件优化设计中的应用对比研究  

Comparative Study on Heuristic Optimization Algorithms and Their Application in Automobile Parts Optimization Design

在线阅读下载全文

作  者:邱荣英[1] 张博钦 刘钊 QIU Rongying;ZHANG Boqin;LIU Zhao(Pan Asia Technical Automotive Center Co.,Ltd.,Shanghai 201201,China;School of Mechanical and Power Engineering,Shanghai Jiaotong University,Shanghai 200240,China;School of Design,Shanghai Jiaotong University,Shanghai 200240,China)

机构地区:[1]泛亚汽车技术中心有限公司,上海201201 [2]上海交通大学机械与动力工程学院,上海200240 [3]上海交通大学设计学院,上海200240

出  处:《汽车工程学报》2024年第6期1061-1071,共11页Chinese Journal of Automotive Engineering

基  金:上海市自然科学基金项目(21ZR1431500)。

摘  要:在汽车结构和零部件设计过程中会产生一系列的优化问题,以实现最佳的性能、最轻的质量和最高的效益。由于优化问题的复杂性,通常利用启发式智能优化算法进行求解。针对启发式优化算法的机理不清晰和其在汽车零部件优化设计过程中效果不明确的问题,对具有代表性的算法进行了统一的推导和表示,利用52组数学测试函数和5个汽车零部件优化案例进行测试分析。结果表明,两类混合改进的优化算法在汽车零部件优化设计问题上的效果较好,同时还给出了工程应用建议和算法研究方向。In the process of designing automobile structures and components,a series of optimization is required to achieve optimal performance,the lightest weight,and the highest efficiency.Due to the complexity of optimization problems,the heuristic intelligent optimization algorithms are typically used to solve them.However,the mechanisms of the heuristic optimization algorithms are not well understood,and their effectiveness in optimization design of automobile parts have not been fully studied.Therefore,selecting appropriate algorithms for different problems is challenging.In this paper,representative algorithms were derived and expressed uniformly.Fifty-two sets of mathematical benchmark functions and five automobile parts optimization design cases were tested.The results show that the two types of hybrid improved algorithms perform well in the optimization design of automobile parts.Recommendations for engineering applications and directions for future algorithm research were also provided.

关 键 词:启发式智能优化算法 轻量化设计 算法适用性度量 对比研究 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象