检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李扬 陈伟 杨清永 李现国[2,3] 徐常余 徐晟 LI Yang;CHEN Wei;YANG Qingyong;LI Xianguo;XU Changyu;XU Sheng(School of Sofware and Commurications,Tianjin Sino-German University of Applied Sciences,Tianjin 300350,China;School of Elctronics and Information Engineering,Tiangong University,Tianjin 300387,China;Tianjin Key Laboratory of Optoelectronie Detction Technology and Systems,Tianjin 300387,China)
机构地区:[1]天津中德应用技术大学软件与通信学院,天津300350 [2]天津工业大学电子与信息工程学院,天津300387 [3]天津市光电检测技术与系统重点实验室,天津300387
出 处:《燕山大学学报》2024年第6期519-527,549,共10页Journal of Yanshan University
基 金:国家自然科学基金资助项目(52271341);天津市科技计划项目(24YDTPJC00410);河北省高等学校科学技术研究项目(ZD2021037);江苏省重点实验室对外开放课题资助项目(zdsys2019-11)。
摘 要:针对印刷电路板缺陷尺寸微小、形态复杂多样和低区分度导致检测准确率低、漏检率高等问题,提出了一种基于大核分离和通道先验卷积注意的印刷电路板缺陷检测方法。首先,结合多尺度特征提取和空间卷积注意力机制,提出大核分离空间金字塔池化以提升模型的多尺度特征整合能力和建模能力。其次,在Neck网络中构建P2小目标检测层,使模型学习更加丰富且鲁棒的特征表示。引入通道先验卷积注意力模块在通道和空间维度上动态分布注意力权重,保留通道先验的同时有效地提取空间关系,提高模型对小目标缺陷的检测精度。实验结果表明,本文方法在PKU-Market-PCB数据集上的mAP达到了98.6%,比基准模型YOLOv8n提升了3.4%,精确度提升了2.6%,召回率提升了4.6%,单张图像推理时间仅为4.1 ms,适于实时检测。该方法显著提高了印刷电路板缺陷检测的准确率和实时性,具有较高的实际应用价值。Addressing the issues of small defect size,complex form,and low discriminability in printed circuit boards that lead to low detection accuracy and high false positive rates,a PCB defect detection method based on large kemel separation and channel prior convolutional attention is proposed.First,combining multi-scale feature extraction and spatial convolution attention mechanism,large kemel separation spatial pyramid pooling is proposed to enhance the multi-scale feature integration ability and modeling capability of the model.Second,the P2 small object detection layer is constructed in the neck network to enable the model to learn richer and more robust feature representations.The introduction of channel prior convolutional attention modules dyamically distributes attention weights along both the channel and spatial dimensions,retaining channel prior information while efectively extracting spatial relationships,thereby enhancing the dection accuracy of small object dects in the model.The experimental results indicate that the mAP of the proposed method on the PKU-Market-PCB dataset reached 98.6%,outperforming the baseline model YOLOv8n by 3.4%.The precision is improved by 2.6%,and the reeall is increased by 4.6%.The inference time per image is only 4.1 ms,making it suitable for real-time detection.In summary,this method significantly enhances the accuracy and real-time performance of printed eircuit board defect detection,providing high practical application value.
关 键 词:缺陷检测 印刷电路板 YOLOv8 大核分离 注意力机制
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222