检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘涵 林家泉 LIU Han;LIN Jiaquan(College of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China)
机构地区:[1]中国民航大学电子信息与自动化学院,天津300300
出 处:《北京航空航天大学学报》2024年第11期3595-3602,共8页Journal of Beijing University of Aeronautics and Astronautics
摘 要:作为一个复杂的热力系统,飞机地面空调能耗受到多种因素的影响,包括各种天气数据和时间特征。为提升飞机客舱使用地面空调制冷时地面空调能耗预测精度,构造了一种基于长短时记忆网络(LSTM)的地面空调能耗预测模型。该模型融合长短时记忆网络和注意力机制构建预测部分,用于提取和利用数据中的时序信息,并以预测精度作为算法的适应度函数,提出一种基于改进粒子群优化(IPSO)算法的超参数优化方法,与标准粒子群优化(PSO)算法相比,该优化算法将迭代次数与适应度相结合,构建了惯性权重的动态调节函数,对其进行动态调节,并引入粒子到全局最优位置的距离参数,提出一种粒子交叉策略,提高粒子群的多样性。所提方法在实际数据集上的仿真预测结果的均方误差为4.394,平均绝对百分比误差为0.774%,决定系数为0.968。与其他预测方法进行对比,结果表明:所提方法有更高的准确度。As a complex thermal system,the energy consumption of aircraft ground air conditioning is affected by many factors,including various weather data and time characteristics.In order to improve the prediction accuracy of ground air conditioning energy consumption when the aircraft cabin is cooled by ground air conditioning,a ground air conditioning energy consumption prediction model based on a long-short-term memory(LSTM)network is proposed.The prediction component of the model,which is utilized to extract and make use of the time series information in the data,is built by integrating the long-short-term memory network with the attention mechanism.The prediction accuracy is used as the fitness function of the algorithm.The hyperparameter optimization based on the improved particle swarm optimization(IPSO)algorithm is proposed.Compared with the standard particle swarm optimization(PSO)algorithm,the improved particle swarm optimization algorithm combines the number of iterations with the fitness to construct a dynamic adjustment function of the inertia weight.The distance from the particle to the global most optimal position is introduced and a particle intersection strategy is proposed to improve the diversity of particle swarms.The mean square error of the prediction result is 4.394.The mean absolute percentage error is 0.774%,and the coefficient of determination is 0.968.The results indicate that the prediction approach has a greater accuracy when compared to other prediction methods.
关 键 词:飞机客舱 地面空调 能耗预测 粒子群优化 长短时记忆神经网络
分 类 号:V351.3[航空宇航科学与技术—人机与环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124