基于文本挖掘的海外游戏玩家对中华文化元素的偏好分析--以“原神”为例  

Preference Analysis of Overseas Game Players for Chinese Cultural Elements Based on Text Mining-Taking“Genshin Impact”as an Example

在线阅读下载全文

作  者:李朗笛 唐炜强 刘圣华 林若琛 LI Langdi;TANG Weiqiang;LIU Shenghua;LIN Ruochen(School of Management,Guangdong University of Technology,Guangzhou 510520,China)

机构地区:[1]广东工业大学管理学院,广东广州510520

出  处:《现代信息科技》2024年第22期111-116,共6页Modern Information Technology

摘  要:国产游戏在海外愈发受年轻玩家所喜爱,蕴含在游戏中的中华优秀传统文化亦随着国产游戏的火爆而“出海”。文章以海外“原神”游戏玩家在YouTube社交媒体平台中发表的包含中华优秀传统文化元素的游戏内容的评论为研究对象,通过Python爬虫程序获取在线评论数据,对爬取到的数据进行预处理,利用规范化的评论数据构建Word2Vec模型,并画出关键词词云图。最后,使用大语言模型对评论文本数据进行情感分析,以可视化的方式呈现研究结果,从而帮助游戏开发者了解海外玩家对游戏中不同中华优秀传统文化元素的喜爱程度,为后续游戏中中华优秀传统文化内容的更新提供数据支持,进而推动中华优秀传统文化更好地“出海”。Domestic games are becoming increasingly popular among young players overseas,and the Chinese excellent traditional culture embedded in games is also“going global”with the popularity of domestic games.This paper takes the comments on the game content of Chinese excellent traditional cultural elements published by overseas“Genshin Impact”game players on the YouTube social media platform as the research object,obtains online comment data through the Python crawler program,preprocesses the scraping data,constructs the Word2Vec model by using the standardized comment data,and draws the keyword word cloud diagram.Finally,the Large Language Model is used to conduct sentiment analysis on the comment text data,presenting the research results in a visual way,so as to help game developers understand the degree of overseas players'love for different Chinese excellent traditional cultural elements in the game.It provides data support for the update of Chinese excellent traditional culture content in subsequent games,and then promotes the Chinese excellent traditional culture to“go global”better.

关 键 词:情感分析 Python爬虫 大语言模型 中华优秀传统文化 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象