ERROR ANALYSIS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH MEASURE DATA IN A NONCONVEX POLYGONAL DOMAIN  

在线阅读下载全文

作  者:Pratibha Shakya 

机构地区:[1]Department of Mathematics,Indian Institute of Technology Delhi,New Delhi 110016,India

出  处:《Journal of Computational Mathematics》2024年第6期1579-1604,共26页计算数学(英文)

摘  要:This paper considers the finite element approximation to parabolic optimal control problems with measure data in a nonconvex polygonal domain.Such problems usually possess low regularity in the state variable due to the presence of measure data and the nonconvex nature of the domain.The low regularity of the solution allows the finite element approximations to converge at lower orders.We prove the existence,uniqueness and regularity results for the solution to the control problem satisfying the first order optimality condition.For our error analysis we have used piecewise linear elements for the approximation of the state and co-state variables,whereas piecewise constant functions are employed to approximate the control variable.The temporal discretization is based on the implicit Euler scheme.We derive both a priori and a posteriori error bounds for the state,control and co-state variables.Numerical experiments are performed to validate the theoretical rates of convergence.

关 键 词:A priori and a posteriori error estimates Finite element method Measure data Nonconvex polygonal domain Optimal control problem 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象