ADAPTIVE REGULARIZED QUASI-NEWTON METHOD USING INEXACT FIRST-ORDER INFORMATION  

在线阅读下载全文

作  者:Hongzheng Ruan Weihong Yang 

机构地区:[1]School of Mathematical Sciences,Fudan University,Shanghai 200433,P.R.China

出  处:《Journal of Computational Mathematics》2024年第6期1656-1687,共32页计算数学(英文)

基  金:supported by the National Natural Science Foundation of China(Grant No.NSFC-11971118).

摘  要:Classical quasi-Newton methods are widely used to solve nonlinear problems in which the first-order information is exact.In some practical problems,we can only obtain approximate values of the objective function and its gradient.It is necessary to design optimization algorithms that can utilize inexact first-order information.In this paper,we propose an adaptive regularized quasi-Newton method to solve such problems.Under some mild conditions,we prove the global convergence and establish the convergence rate of the adaptive regularized quasi-Newton method.Detailed implementations of our method,including the subspace technique to reduce the amount of computation,are presented.Encouraging numerical results demonstrate that the adaptive regularized quasi-Newton method is a promising method,which can utilize the inexact first-order information effectively.

关 键 词:Inexact first-order information REGULARIZATION Quasi-Newton method 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象