Zig, Zag, and ’Zyme: leveraging structural biology to engineer disease resistance  

在线阅读下载全文

作  者:Alexander J.McClell Wenbo Ma 

机构地区:[1]The Sainsbury Laboratory,Norwich Research Park,Norwich NR47UH,UK

出  处:《aBIOTECH》2024年第3期403-407,共5页生物技术通报(英文版)

基  金:supported by Gatsby Charitable Foundation and UKRI BBSRC Grant BBS/E/J/000PR9797.

摘  要:Dynamic host–pathogen interactions determine whether disease will occur.Pathogen effector proteins are central players in such disease development.On one hand,they improve susceptibility by manipulating host targets;on the other hand,they can trigger immunity after recognition by host immune receptors.A major research direction in the study of molecular plant pathology is to understand effector-host interactions,which has informed the development and breeding of crops with enhanced disease resistance.Recent breakthroughs on experiment-and artificial intelligence-based structure analyses significantly accelerate the development of this research area.Importantly,the detailed molecular insight of effector–host interactions enables precise engineering to mitigate disease.Here,we highlight a recent study by Xiao et al.,who describe the structure of an effector-receptor complex that consists of a fungal effector,with polygalacturonase(PG)activity,and a plant-derived polygalacturonase-inhibiting protein(PGIP).PGs weaken the plant cell wall and produce immune-suppressive oligogalacturonides(OGs)as a virulence mechanism;however,PGIPs directly bind to PGs and alter their enzymatic activity.When in a complex with PGIPs,PGs produce OG polymers with longer chains that can trigger immunity.Xiao et al.demonstrate that a PGIP creates a new active site tunnel,together with a PG,which favors the production of long-chain OGs.In this way,the PGIP essentially acts as both a PG receptor and enzymatic manipulator,converting virulence to defense activation.Taking a step forward,the authors used the PG-PGIP complex structure as a guide to generate PGIP variants with enhanced long-chain OG production,likely enabling further improved disease resistance.This study discovered a novel mechanism by which a plant receptor plays a dual role to activate immunity.It also demonstrates how fundamental knowledge,obtained through structural analyses,can be employed to guide the design of proteins with desired functions in agriculture.

关 键 词:Plant immunity Structural biology BIOENGINEERING Cell wall-degrading enzymes Receptor biology 

分 类 号:Q94[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象