基于深度学习的盾构隧道表观病害自动检测方法  

Automatic Detection Method for Surface Diseases of Shield Tunnel Based on Deep Learning

在线阅读下载全文

作  者:王宝坤 王如路[2] 陈锦剑[1] 潘越 王鲁杰 WANG Baokun;WANG Rulu;CHEN Jinjian;PAN Yue;WANG Lujie(Department of Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai Shentong Metro Group Co.,Ltd.,Shanghai 20o070,China)

机构地区:[1]上海交通大学土木工程系,上海200240 [2]上海申通地铁集团有限公司,上海200070

出  处:《上海交通大学学报》2024年第11期1716-1723,共8页Journal of Shanghai Jiaotong University

基  金:国家自然科学基金(72201171);上海市优秀学术带头人计划(20XD1422100)资助项目。

摘  要:为实现高精度像素级地铁盾构隧道表观多病害检测,提出一种基于深度学习的语义分割模型SU-ResNet++.首先,设计基于残差单元结合注意力机制的编码器SE-ResNet50进行预训练,并将其作为U-Net++的主干网络设计新型神经网络模型;其次,通过原始数据采集、数据预处理及人工标注,构建具有4 500张图片的盾构隧道表观多病害数据集;最后,将所提出的方法通过数据集进行训练、验证和测试,并应用于实际工程检测,实现了高精度像素级的病害语义分割.实验结果表明,所提出的SU-ResNet++算法适用于盾构隧道病害数据检测,可以自动准确地识别病害类别及形态,病害识别精度相比传统语义分割模型有明显提高,并且满足实际工程需求.In order to achieve high-precision pixel-level detection of multiple surface diseases in metro shield tunnels,a semantic segmentation model SU-ResNet++based on deep learning is proposed.First,the encoder SE-ResNet5o based on residual unit and attention mechanism is designed and pre-trained,using as the backbone network of U-Net++to design a new neural network model.Then,through original data collection,data preprocessing,and manual annotation,a shield tunnel surface multiple diseases dataset with 4500 pictures is constructed.Finally,the proposed method is trained,verified,and tested on a dataset,and applied to practical engineering detection,achieving high-precision pixel-level diseases semantic segmentation.The experimental results indicate that the proposed SU-ResNet++algorithm is applicable to the detection of shield tunnel disease data,and can automatically and accurately identify the disease category and form.Compared with the traditional semantic segmentation models,its disease identification precision is significantly improved,which meets the practical engineering requirements.

关 键 词:地铁盾构隧道 数据集构建 语义分割 深度迁移学习 U-Net++网络 

分 类 号:U457.2[建筑科学—桥梁与隧道工程] TP391.41[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象