检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐少平[1] 熊明海 周常飞 XU Shaoping;XIONG Minghai;ZHOU Changfei(School of Mathematics and Computer Sciences,Nanchang University,Nanchang 330031,China)
出 处:《电子与信息学报》2024年第11期4229-4235,共7页Journal of Electronics & Information Technology
基 金:国家自然科学基金(62162043)。
摘 要:鉴于深度图像先验(DIP)降噪模型的性能高度依赖于目标图像所确定的搜索空间,该文提出一种新的基于近清图像空间搜索策略的改进降噪模型。首先,使用当前两种主流有监督降噪模型对同一场景下两张噪声图像分别进行降噪,所获得两张降噪后图像称为近清图像;其次,采用随机采样融合法将两张近清图像融合后作为网络输入,同时以两张近清图像替换噪声图像作为双目标图像以更好地约束搜索空间,进而在更为接近参考图像的空间范围内搜索可能的图像作为降噪后图像;最后,将原DIP模型的多尺度UNet网络简化为单尺度模式,同时引入Transformer模块以增强网络对长距离像素点之间的建模能力,从而在保证网络搜索能力的基础上提升模型的执行效率。实验结果表明:所提改进模型在降噪效果和执行效率两个方面显著优于原DIP模型,在降噪效果方面也超过了主流有监督降噪模型。Given that the performance of the Deep Image Prior(DIP)denoising model highly depends on the search space determined by the target image,a new improved denoising model called RS-DIP(Relatively clean image Space-based DIP)is proposed by comprehensively improving its network input,backbone network,and loss function.Initially,two state-of-the-art supervised denoising models are employed to preprocess two noisy images from the same scene,which are referred to as relatively clean images.Furthermore,these two relatively clean images are combined as the network input using a random sampling fusion method.At the same time,the noisy images are replaced with two relatively clean images,which serve as dual-target images.This strategy narrows the search space,allowing exploration of potential images that closely resemble the ground-truth image.Finally,the multi-scale U-shaped backbone network in the original DIP model is simplified to a single scale.Additionally,the inclusion of Transformer modules enhances the network’s ability to effectively model distant pixels.This augmentation bolsters the model’s performance while preserving the network’s search capability.Experimental results demonstrate that the proposed denoising model exhibits significant advantages over the original DIP model in terms of both denoising effectiveness and execution efficiency.Moreover,regarding denoising effectiveness,it surpasses mainstream supervised denoising models.
关 键 词:深度图像先验 降噪性能 近清图像 随机采样融合 双目标图像 Transformer
分 类 号:TN911.73[电子电信—通信与信息系统] TP391.4[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.3.240