(2+1)维双sine-Gordon方程新的无穷序列精确解  

New infinite series exact solutions to the(2+1)dimensional double sine-Gordon equation

在线阅读下载全文

作  者:吴国将 吁艳林 WU Guojiang;YU Yanlin(School of Science,Kaili University,Kaili 556000,China)

机构地区:[1]凯里学院理学院,贵州凯里556000

出  处:《安徽大学学报(自然科学版)》2024年第6期37-46,共10页Journal of Anhui University(Natural Science Edition)

基  金:凯里学院博士专项基金资助项目(BS20240209)。

摘  要:(2+1)维双sine-Gordon方程常用于描述非线性光学、超流体及铁磁材料等领域的非线性波现象.提出一种新的无穷序列孤立波解和周期波解的构造方法.将Riccati方程作为辅助方程,通过不同迭代关系求解Riccati方程,得到该方程许多新的双曲函数解和三角函数解.将所得到的解代入(2+1)维双sine-Gordon方程,获得了(2+1)维双sine-Gordon方程的大量新无穷序列精确孤立波解和周期波解,这些解的大部分在其他文献中未见报道.The(2+1)dimensional double sine-Gordon equation is commonly used to describe nonlinear wave phenomena in fields such as nonlinear optics,superfluids,and ferromagnetic materials.A new method for constructing infinite sequence solitary wave solutions and periodic wave solutions was proposed.By using the Riccati equation as an auxiliary equation and solving it through differentiterationrelationships,many new hyperbolic and trigonometric solutions to the equation were obtained.By substituting the obtained solutions into the(2+1)dimensional double sine-Gordon,a large number of new infinite series exact solitary wave solutions and periodic wave solutions to the(2+1)dimensional double sine-Gordon equation were obtained,most of which had not been reported in other literature.

关 键 词:(2+1)维双sine-Gordon方程 孤立波解 周期波解 无穷序列解 

分 类 号:O411[理学—理论物理] O415[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象