机构地区:[1]中国科学院、水利部成都山地灾害与环境研究所,四川成都610299 [2]中国科学院大学,北京100049 [3]成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室,四川成都610225
出 处:《高原气象》2024年第6期1586-1599,共14页Plateau Meteorology
基 金:中国科学院、水利部成都山地灾害与环境研究所科研项目(IMHE-ZDRW-06);中国科学院先导专项(XDA23060601);国家自然科学基金项目(41975153)。
摘 要:在全球变暖的背景下,西南地区整体上气温升高降水减少,作为中国重要的碳汇地区,西南地区的植被动态监测与模拟对深入了解其碳循环机制和促进经济可持续发展具有重要意义。本研究利用陆面过程模式(Community Land Model version5, CLM5),模拟和分析西南地区2000-2016年叶面积指数LAI(Leaf Area Index, LAI)和总初级生产力GPP(Gross Primary Productivity, GPP)的时空变化特征,并与多套遥感数据进行对比,评估CLM5在西南地区对LAI和GPP模拟的适用性。研究结果表明,CLM5能较好地模拟西南地区LAI和GPP的季节变化规律,但模拟存在对LAI生长季的高估,以及对GPP全年低估,对温带落叶阔叶灌木的LAI、高寒C3草甸的LAI、 GPP和C3草甸的GPP模拟效果较好。CLM5能够较好地刻画西南地区LAI和GPP空间分布格局,表现为由东南向西北递减,但整体上CLM5对西南地区LAI模拟偏高,特别是对贵州喀斯特地貌地区LAI的模拟偏高。与模型对LAI模拟高估相反,CLM5对西南地区GPP的模拟整体偏低,特别是云南地区。此外,CLM5对西南地区LAI和GPP的变化趋势模拟效果较差,特别是在云南大部分地区,遥感数据主要呈现上升趋势,而CLM5模拟呈现下降趋势。整体上,CLM5能模拟出西南地区LAI和GPP的季节变化规律和空间分布,但对云南和贵州部分地区的变化趋势模拟较差,仍需要针对四川盆地农田、云南森林、和贵州喀斯特地区植被发展更深入的参数化方案来提升模拟效果。Under the background of global warming,the temperature has increased frequently in the southwest,and the ecosystem in the southwest is vulnerable and sensitive to climate change in the past few decades.The southwest region is an important carbon sink area in China.Monitoring and simulation of vegetation variations is of great significance for an in-depth understanding of the carbon cycle mechanism and promoting sustainable economic development.Leaf Area Index(LAI)and Gross Primary Productivity(GPP),as indicators of vegetation health and ecosystem stability,can be used to quantify vegetation studies and characterize dynamic changes of vegetation.Vegetation dynamic Model is one of the important means to study vegetation growth and change.Community Land Model(CLM)is one of the earliest land model with the function of vegetation dynamic simulation,the most developed and widely used land model in the world.Model evaluation is an indispensable part of model development,which provides a basis for model development and improvement.This study uses the Community Land Model version5(CLM5)to simulate and analyze the spatial and temporal variations of the leaf area index(LAI)and total primary productivity(GPP)in the southwest region across 2000-2016,and compare it with multiple sets of remote sensing data to evaluate LAI and GPP simulations of CLM5 in the southwest.The results showed that CLM5 could well simulate the seasonal variation of LAI and GPP in southwest China,but overestimated LAI in growing season.The CLM5 can reasonably simulate LAI of temperate deciduous broadleaf shrubs,LAI,GPP of alpine C3 meadow and GPP of C3 meadow.CLM5 could capture the spatial distribution pattern of LAI and GPP in the southwest,which is decreasing from southeast to northwest,but CLM5 overestimates LAI in the whole southwest region,especially in the karst landform area of Guizhou.Contrary to the overestimation of LAI simulation,CLM5's overall simulation of GPP in Southwest China is low,especially in Yunnan province.In addition,CLM5 has a po
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...