检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯天培 惠延波[1] 王岩松 马喜岭 张博强 孙朋 FENG Tianpei;HUI Yanbo;WANG Yansong;MA Xiling;ZHANG Boqiang;SUN Peng(College of Mechanical and Electrical Engineering,Henan University of Technology,Zhengzhou 450007,China;School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;Xuchang Yuandong Drive Shaft Co.,Ltd.,Xuchang 461000,Henan,China)
机构地区:[1]河南工业大学机电工程学院,郑州450007 [2]上海工程技术大学机械与汽车工程学院,上海201620 [3]许昌远东传动轴股份有限公司,河南许昌461000
出 处:《噪声与振动控制》2024年第6期198-205,共8页Noise and Vibration Control
基 金:国家自然科学基金资助项目(52172371);河南省重点研发与推广专项(科技攻关)资助项目(232102110279);河南省高等学校重点科研资助项目(22A460010);河南工业大学高层次人才基金资助项目(2021BS079)。
摘 要:与汽车非平稳车内噪声时变声品质主观评价序列的平滑性相反,传统客观评价模型输出的预测序列是较为波动的。本文在传统模型建立的基础上,利用Savitzky-Golay滤波器对预测序列进行时域平滑后处理。检验结果表明,相比于预测序列,时序平滑评价序列对车内噪声时变综合烦躁度的评价性能更高,预测精度(误差均方根值降低11.40%)、稳定性(误差方差降低31.50%)与一致性(Pearson相关系数提高9.95%)均得到较大提高。在传统模型基础上对预测序列进行时域平滑后处理,是具有更高精度的时变综合烦躁度客观评价方法。Contrary to the smoothness of the time-varying subjective sound quality evaluation(SQE)sequence of the vehicle interior non-stationary noise,the prediction sequence output by the traditional objective evaluation model fluctuates rapidly in the time domain.In this paper,based on the traditional time-varying annoyance(TVA)evaluation model of automotive interior non-stationary noise,the Savitzky-Golay filter(SG filter)was used to smooth the prediction sequence in time domain.The results show that compared with the prediction sequence,the smoothed evaluation sequence has a better prediction performance.It improves the prediction accuracy by deceasing the root mean square of prediction errors by 11.40%,improves the stability by decreasing the variance by 31.50%,and improves the consistency by increasing the Pearson correlation coefficient by 9.95%.It is concluded that on the basis of the traditional model,the prediction sequence smoothed in the time domain is an better objective evaluation method for the TVA of automotive interior non-stationary noise with higher prediction accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7