检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卫娜 焦明海 WEI Na;JIAO Minghai(School of Computer Science and Engineering,Northeastern University,Shenyang 110000,China)
机构地区:[1]东北大学计算机科学与工程学院,沈阳110000
出 处:《计算机工程与应用》2024年第23期146-154,共9页Computer Engineering and Applications
基 金:国家自然科学基金(62072085)。
摘 要:针对三维人体姿态估计中末端关节存在较大估计误差的问题,以时空图卷积网络为基础,提出融合双通道关节约束的三维人体姿态估计方法(JC-STGNet)。提出自适应权重模块,解耦不同关节特征变换,提高特征表达灵活性;结合人体先验结构知识,设计两个新颖的卷积核,获取更丰富的关节特征;最后,引入关节内部约束模块,对自由度较高的末端关节进行特征替换,提高模型对末端关节的估计准确度。在Human3.6M数据集上的实验表明,与基线时空图卷积网络相比,JC-STGNet在MPJPE和P-MPJPE两个指标下,准确度分别提升了3.1 mm和12.4 mm;与同准确度的网络相比,本文的参数量减少了22.27%。To tackle the issue of significant estimation errors in the distal joints of 3D human pose estimation,this paper presents a method called joint-constrained spatio-temporal graph network(JC-STGNet)that incorporates dual-channel joint constraints.Firstly,it introduces an adaptive weight module to separate different joint feature transformations,thereby enhancing the flexibility of feature representation.Moreover,the paper designs two novel convolutional kernels that leverage prior structural knowledge of the human body to capture more informative joint features.Lastly,it introduces an intra-joint constraint module to replace features in the distal joints with higher degrees of freedom,thereby improving the accuracy of the model’s estimation for these joints.Experimental results on the Human3.6M dataset demonstrate that JC-STGNet achieves a 3.1 mm and 12.4 mm improvement in accuracy,as measured by the MPJPE and P-MPJPE metrics,respectively,compared to the baseline spatio-temporal graph network.Furthermore,this proposed method reduces the pa-rameter count by 22.27%compared to networks with similar accuracy.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222