检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘刚[1] 许崇帮[1] 肖维民 郑子腾 龚建伍[3] LIU Gang;XU Chong-bang;XIAO Wei-min;ZHENG Zi-teng;GONG Jian-wu(Research Institute of Highway,Ministry of Transport,Beijing 100088,China;School of Civil Engineering,Sichuan Agricultural University,Ya’an,Sichuan 625014,China;School of Urban Construction,Wuhan University of Science and Technology,Wuhan,Hubei 430081,China)
机构地区:[1]交通运输部公路科学研究院,北京100088 [2]四川农业大学土木工程学院,四川雅安625014 [3]武汉科技大学城市建设学院,湖北武汉430081
出 处:《公路交通科技》2024年第10期139-148,共10页Journal of Highway and Transportation Research and Development
基 金:贵州省重大科技专项项目(黔科合重大专项字[2018] 3011)。
摘 要:为解决嵌入式可冲洗隧道排水管物理参数的设计问题,提升隧道排水系统的工作效率,在此应用场景上构建了一种水力计算模型。嵌入式可冲洗隧道排水管不同于“先堵塞,再疏通”的治理思路,其工作方式为定期接入高压水泵,泵送高压水进入冲洗管,在结晶物还未沉积牢固时通过冲洗管上的孔洞冲刷外部排水管壁,达到预防排水管堵塞的目的。基于此场景构建的嵌入式可冲洗隧道排水管水力计算模型,满足水头损失一致的假设,由修正后的伯努利方程、杨海涛水头损失公式和达西-维斯巴赫公式构建冲洗管相邻孔之间的冲洗速度迭代公式,由此计算出各冲洗孔冲洗速度的解析解。理论计算结果表明:冲洗孔水流速度随着沿程水头损失服从严格的速度衰减规律,验证了水力计算模型的合理性。并通过数值模拟分析得出:理论推导结果和数值试验计算结果基本符合一致,对比误差平均值为4.3%;理论推导结果和数值模拟计算结果在管道末尾时差距较大,主要原因是实际流体会在末端形成回流,改变管道内部流场变化,而解析解则是严格遵循沿程水头损失规律。最后,归纳不同工况所需水流的进口速度和进口流量规律:冲洗管进口速度随冲洗孔间距增大而减小,随冲洗孔直径增大而增大;冲洗管进口流量随冲洗孔间距增大而减小,随冲洗孔直径增大而增大。To solve the problem about physical parameters design for the embedded flushable tunnel drainage pipe,and to improve the working efficiency of tunnel drainage system,the hydraulic calculation model was established on this application scenario.The embedded flushable tunnel drainage pipe is different from the treatment idea of plugging first then dredging.Its working mode is to regularly access high pressure pump,to pump high pressure water into the flushing pipe,and to flush the external drainage pipe wall through the holes on flushing pipe when the crystals are not firmly deposited;so as to prevent the drainage pipe plugging.Based on this scenario,the hydraulic calculation model of embedded flushable tunnel drainage pipe satisfies the assumption of consistent head loss.The iterative formula of flushing velocity between adjacent holes of flushing pipe was established by using the modified Bernoulli equation,Yang Haitao’s head loss formula,and Darcy-Weisbach formula;and the analytical solution of flushing velocity of each flushing hole was calculated.The theoretical calculation result indicates that the water velocity of flushing hole follows the strict velocity attenuation rule along with the head loss,which verifies the rationality of hydraulic calculation model.Through numerical simulation analysis,the results of theoretical derivation and numerical experiment are basically compound and consistent with the average comparison error is 4.3%.There is a big gap between the theoretical derivation result and the numerical simulation result at the end of pipeline,mainly because the actual flow forms the reflux at the end and change the flow field inside the pipeline;while the analytical solution strictly follows the rule of head loss along the pipeline.Finally,the inlet velocity and inlet flow rules of the required water flow in different working conditions were summarized.The inlet velocity of flushing pipe decreases with the increase of flushing holes spacing,and increases with the increase of flushing holes’diam
关 键 词:隧道工程 可冲洗排水管 结晶堵塞 水力计算 数值模拟
分 类 号:U451[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.227.158