基于改进型Smith预估算法的EC值调控系统仿真与分析  

Simulation and Analysis of EC Value Control System Based on Improved Smith Prediction Algorithm

在线阅读下载全文

作  者:石俊超 郑威强 张立萍 张文杰 李魁夺 SHI Junchao;ZHENG Weiqiang;ZHANG Liping;ZHANG Wenjie;LI Kuiduo(School of Intelligent Manufacturing and Modern Industry,Xinjiang University,Urumqi Xinjiang 830017,China)

机构地区:[1]新疆大学智能制造现代产业学院,新疆乌鲁木齐830017

出  处:《新疆大学学报(自然科学版中英文)》2024年第6期756-763,共8页Journal of Xinjiang University(Natural Science Edition in Chinese and English)

基  金:新疆维吾尔自治区科技计划重点研发专项“核桃采收后加工关键技术研究与装备研发”(2022B02028-4).

摘  要:为使EC值调控系统更加稳定,响应更快,给实际EC值调控系统提供了一种可行策略.针对EC值调控过程和特点,建立并描述了具有二次混肥特性的EC值调控过程的二阶数学模型,提出一种结合模糊PID和改进型的Smith预估算法对调控过程进行控制,用MATLAB软件中的Simulink模块对PID、模糊PID和改进型Smith控制算法进行阶跃响应跟踪实验和抗干扰测试实验并进行分析.结果表明:1)PID控制时系统超调量为13.068%,到达稳态的响应时间为97 s,加入干扰后恢复稳态的时间为168 s;2)模糊PID控制时系统超调量为6.989%,到达稳态的响应时间为70 s,加入干扰后恢复稳态的时间为138 s;3)改进型Smith控制时系统超调量为0.505%,到达稳态的响应时间为57 s,加入干扰后恢复稳态的时间为104 s.In order to make the EC value control system more stable and respond faster,a feasible strategy is provided for the actual EC value control system.Based on its regulation process and characteristics,a second-order mathematical model of EC value regulation process with secondary mixed fertilizer characteristics was established and described.A combination of fuzzy PID and an improved Smith prediction algorithm was proposed to control the regulation process.The Simulink module in MATLAB software was used to perform step response tracking experiments and anti-interference test experiments on the PID,fuzzy PID and improved Smith control algorithms.The results show that:1)In PID control,the overshoot of the system is 13.068%,the response time to reach the steady state is 97 s,and the time to restore the steady state after adding interference is 168 s.2)Fuzzy PID control system overshoot is 6.989%,the response time to reach steady state is 70 s,the time to restore steady state after adding interference is 138 s;3)In the improved Smith control,the overshoot of the system is 0.505%,the response time to reach the steady state is 57 s,and the time to restore the steady state after adding interference is 104 s.

关 键 词:调控系统 改进型Smith 二次混肥 阶跃响应 抗干扰 

分 类 号:S126[农业科学—农业基础科学] TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象