基于生成对抗网络的潮流能水轮机水翼优化设计  

HYDROFOIL OPTIMIZATION DESIGN OF TIDAL ENERGY TURBINE BASED ON GENERATIVE ADVERSARIAL NETWORK

在线阅读下载全文

作  者:李昌明 袁鹏[1] 王树杰[1] 谭俊哲[1] 司先才[1] 刘永辉 Li Changming;Yuan Peng;Wang Shujie;Tan Junzhe;Si Xiancai;Liu Yonghui(College of Engineering,Ocean University of China,Qingdao 266100,China)

机构地区:[1]中国海洋大学工程学院,青岛266100

出  处:《太阳能学报》2024年第11期586-594,共9页Acta Energiae Solaris Sinica

基  金:国家重点研发计划(2018YFB1501903)。

摘  要:针对水翼的全局优化需大量的计算流体动力学(CFD)模拟进而增加计算成本的问题,提出一种基于生成对抗网络(GAN)和CFD的水翼优化设计框架,利用GAN根据现有翼型库对水翼设计进行参数化,由于GAN的高维生成能力,这种参数化方法仅使用少量的参数即可生成大量光滑逼真的水翼,降低了水翼参数的维度。该优化框架结合Python脚本和OpenFOAM自动完成水翼的网格生成和流体仿真,可得到具有更高升阻比的水翼,优化总时间成本为69.8 h,提高优化效率和精度。此外,将优化水翼应用于潮流能水轮机叶片的设计,结果表明,优化水翼Optc建模的水轮机叶片最佳获能系数提升15.56%,显著提高水轮机的获能性能。To address the issue that global optimization of hydrofoils requires extensive computational fluid dynamics(CFD)simulations,leading to increased computational costs,the hydrofoil optimization design framework based on generative adversarial networks(GAN)and CFD is proposed.GAN is utilized to parameterize hydrofoil designs based on the existing airfoil library.Due to the high-dimensional generation capability of GAN,this parameterization method can generate a large number of smooth and realistic hydrofoils using only a small number of parameters,thereby reducing the dimensions of the hydrofoil parameterization.This optimization framework combines Python scripts and OpenFOAM to automatically complete the mesh generation and fluid simulation of the hydrofoil,resulting in a hydrofoil with a higher lift-to-drag ratio.The total optimization time cost is 69.8 hours,which improves optimization efficiency and accuracy.Furthermore,the optimized hydrofoils are applied to the design of tidal turbine blades.The results indicate that the optimal power coefficient of the tidal turbine blades modeled using the optimized hydrofoil Optc increases by 15.56%,enhancing the energy capture performance of the turbine.

关 键 词:水翼 生成对抗网络 潮流能 计算流体动力学 水轮机叶片 获能系数 

分 类 号:P756[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象