基于灾害预测的配电网多时段供电弹性提升策略  

Disaster Prediction-based Resilience Enhancement Strategy for Multi-hour Power Supply in Distribution Networks

在线阅读下载全文

作  者:袁文海 居来提·阿不力孜 黄新民 穆斯塔法·努尔 黄韦博 马静[2] YUAN Wenhai;JULAITI Abuliz;HUANG Xinmin;MUSTASA Nur;HUANG Weibo;MA Jing(Urumqi Power Supply Company,State Grid Xinjiang Electric Power Co.,Ltd.,Urumqi 830011,Xinjiang Uygur Autonomous Region,China;School of Electrical and Electronic Engineering,North China Electric Power University,Changping District,Beijing 102206,China)

机构地区:[1]国网新疆电力有限公司乌鲁木齐供电公司,新疆维吾尔自治区乌鲁木齐市830011 [2]华北电力大学电气与电子工程学院,北京市昌平区102206

出  处:《现代电力》2024年第6期1060-1071,共12页Modern Electric Power

基  金:国网新疆电力有限公司重点科技项目(SGXJWL00CBJS2200564)。

摘  要:考虑配电网所面临的极端灾害风险,提出一种基于灾害预测的配电网弹性供电策略。首先,分析灾害预测对配电网弹性供电的提升作用。其次,基于灾害预测信息,考虑应急电源车的优化部署与电能转运,提出配电网面临灾害时的预防、抵御和恢复3个阶段的供电弹性提升模型。第三,采用二阶锥松弛方法,将所构建的非凸非线性模型转化为混合整数二阶锥规划模型并求解。最后,通过改进的69节点配电系统进行算例仿真,验证了所提策略的有效性和优越性。Considering the extreme disaster risk faced by the distribution network,a disaster prediction-based resilience enhancement power supply strategy for the distribution network was proposed.Firstly,the effect of disaster prediction on improving the flexible power supply of the distribution network was analyzed.Secondly,considering the optimal deployment of emergency power vehicles and the transfer of electric energy,a three-stage power supply elasticity improvement model for distribution network disaster prevention,resistance,and recovery was proposed based on the disaster prediction information.Thirdly,the constructed non-convex nonlinear model was transformed into a mixed integer second-order cone programming model and solved by using the second-order cone relaxation method.Finally,the effectiveness and superiority of the proposed strategy are verified through the example simulation of the improved 69-node power distribution system.

关 键 词:灾害预测 配电网 分布式电源 弹性 供电恢复 

分 类 号:TM72[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象