检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李腾 廖军 樊培培 蒋欣峰 卢一相[2] LI Teng;LIAO Jun;FAN Peipei;JIANG Xinfeng;LU Yixiang(Super High Voltage Branch of State Grid Anhui Electric Power Co.,Ltd.,Hefei 230022,Anhui Province,China;School of Electrical Engineering and Automation,Anhui University,Hefei 230601,Anhui Province,China)
机构地区:[1]国网安徽省电力有限公司超高压分公司,安徽省合肥市230022 [2]安徽大学电气工程与自动化学院,安徽省合肥市230601
出 处:《现代电力》2024年第6期1167-1175,共9页Modern Electric Power
基 金:国网安徽省电力股份有限公司科技项目(52120322000D)。
摘 要:变压器的运行寿命与变压器绝缘性能直接相关。对于特高压换流变压器来说,油温预测可作为其绝缘性能评估的重要依据。为提高换流变油温预测精度,提出一种基于长短期记忆网络(long-short term memory network,LSTM)、自注意力机制(self-attention mechanism,SA)和门控循环单元(gated recurrent unit,GRU)串并行混合模型的换流变顶层油温预测方法。首先,对换流变顶层油温数据进行滚动滑窗预处理;然后,建立LSTM与SA并行的预测模型,并利用GRU对并行预测的结果进行融合,经全连接层调节后输出最终预测结果。对比实验表明,相较于单一预测模型,采用混合预测模型在换流变顶层油温预测中可以取得更高的精度。The service life of a transformer is directly related to its insulation performance.For UHV converter transformers,oil temperature forecasting can be used as an important basis for evaluating its insulation performance.In this paper,a method for top-oil temperature forecasting which combined longshort term memory networks(LSTM),self-attention mechanism(SA)and gated recurrent unit(GRU)was proposed,aiming to enhance temperature forecasting accuracy of converter transformers.Firstly,the original top-oil temperature series was preprocessed.Secondly,a parallel forecasting model was implemented by LSTM and SA,and fused the parallel forecasting features using GRU.Finally,the forecasting results were obtained after adjustment by the fully connected layer.The experimental results show that the proposed method is superior to other existing single forecasting models in UHV converters topoil temperature forecasting.
关 键 词:换流变压器 顶层油温预测 长短期记忆网络 自注意力机制 门控循环单元
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7