Energy consumption dynamic prediction for HVAC systems based on feature clustering deconstruction and model training adaptation  

在线阅读下载全文

作  者:Huiheng Liu Yanchen Liu Huakun Huang Huijun Wu Yu Huang 

机构地区:[1]School of Civil Engineering and Transportation,Guangzhou University,Guangzhou,510006,China [2]School of Computer Science and Cyber Engineering,Guangzhou University,Guangzhou,510006,China

出  处:《Building Simulation》2024年第9期1439-1460,共22页建筑模拟(英文)

基  金:supported by the National Natural Science Foundation of China(No.52108074);the National Natural Science Foundation of China(No.52078144).

摘  要:The prediction of building energy consumption offers essential technical support for intelligent operation and maintenance of buildings,promoting energy conservation and low-carbon control.This paper focused on the energy consumption of heating,ventilation and air conditioning(HVAC)systems operating under various modes across different seasons.We constructed multi-attribute and high-dimensional clustering vectors that encompass indoor and outdoor environmental parameters,along with historical energy consumption data.To enhance the K-means algorithm,we employed statistical feature extraction and dimensional normalization(SFEDN)to facilitate data clustering and deconstruction.This method,combined with the gated recurrent unit(GRU)prediction model employing adaptive training based on the Particle Swarm Optimization algorithm,was evaluated for robustness and stability through k-fold cross-validation.Within the clustering-based modeling framework,optimal submodels were configured based on the statistical features of historical 24-hour data to achieve dynamic prediction using multiple models.The dynamic prediction models with SFEDN cluster showed a 11.9%reduction in root mean square error(RMSE)compared to static prediction,achieving a coefficient of determination(R2)of 0.890 and a mean absolute percentage error(MAPE)reduction of 19.9%.When compared to dynamic prediction based on single-attribute of HVAC systems energy consumption clustering modeling,RMSE decreased by 12.6%,R2 increased by 4.0%,and MAPE decreased by 26.3%.The dynamic prediction performance demonstrated that the SFEDN clustering method surpasses conventional clustering method,and multi-attribute clustering modeling outperforms single-attribute modeling.

关 键 词:HVAC system energy consumption clustering analysis deep learning model adaptation dynamic prediction 

分 类 号:TU83[建筑科学—供热、供燃气、通风及空调工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象