玉屏风口服液黄芪甲苷含量测定前处理方法的优化  

Optimization of Pre-treatment Method for Determining the Content of Astragaloside in Yupingfeng Oral Liquid

在线阅读下载全文

作  者:袁靖 周亚敏 谢芳云 喻目千 吴胜男 YUAN Jing;ZHOU Yamin;XIE Fangyun;YU Muqian;WU Shengnan(Changsha Institute for Food and Drug Control,Changsha 410036,China)

机构地区:[1]长沙市食品药品检验所,湖南长沙410036

出  处:《化工管理》2024年第33期66-70,共5页Chemical Management

摘  要:文章建立加热回流的前处理方法,对玉屏风口服液含量测定的前处理过程进行方法优化。采用高效液相色谱法(HPLC)测定,用蒸发光散射检测器(ELSD)作为检测器,以黄芪甲苷为指标,对加热回流法和有机溶剂萃取法进行了比对,以确定其含量。结果表明,加热回流法为更优的制备方法,黄芪甲苷在进样量为0.438 6~0.877 3μg之间表现出良好的线性和准确度,其相关系数r=1.000,回归方程为Y=1.809 2X+2.314 6,平均回收率为94.95%,RSD值为1.2%(n=13),符合方法建立的要求。建立的加热回流前处理方法操作简便、有效成分损失小,数据准确性高、重现性好,可作为玉屏风口服液含量测定的方法,为黄芪甲苷制剂方法优化提供参考。In this paper,the pre-treatment method of heating reflux was established,and the pre-treatment process of determining the content of Yupingfeng oral liquid was optimized.The high performance liquid chromatography(HPLC) was used,the evaporative light scattering detector(ELSD) was used as detector,astragaloside was used as the index,the heating reflux method and the organic solvent extraction method were compared in order to determine its content.The results showed that the heating reflux method was the better preparation method.Astragaloside showed good linearity and accuracy when the sample size was 0.438 6-0.877 3 μg.The correlation coefficient r was 1.000,the regression equation was Y= 1.809 2X +2.314 6,and the average recovery was 94.95%,the RSD value was 1.2%(n=13),which met the requirements of the method establishment.The established pre-treatment method for heating reflux is simple,with low loss of active ingredients,high data accuracy and good reproducibility.It can be used as a method for the content determination of Yupingfeng oral liquid and provide reference for the optimization of astragaloside preparation method.

关 键 词:黄芪甲苷 玉屏风口服液 前处理方法 

分 类 号:R91[医药卫生—药学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象