检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematical Sciences,Beihang University,Beijing,100191,P.R.China [2]LMIB,Institute of Artificial Intelligence&School of Mathematical Sciences,Beihang University,Beijing,100191,P.R.China [3]Beijing Zhongguancun Laboratory,Beijing,100094,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2024年第11期2671-2683,共13页数学学报(英文版)
基 金:Supported by National Key R&D Program of China(Grant No.2022YFA1005801);National Natural Science Foundation of China(Grant No.12071018);the Fundamental Research Funds for the Central Universities。
摘 要:In this paper,we introduce a new concept of expansiveness,similar to the separating property.Specifically,we consider a compact Riemannian manifold M without boundary and a C^(1)vector field X on M,which generates a flowφ_(t)on M.We say that X is rescaling separating on a compact invariant setΛof X if there is a constantδ>0 such that,for any x,y∈Λ,if d(φ_(t)(x),φ_(t)(y))≤δ∥X(φ_(t)(x))∥for all t∈R,then y∈Orb(x).We prove that if X is rescaling separating onΛand every singularity of X inΛis hyperbolic,then any C^(1)vector field Y,whose flow commutes withφ_(t)onΛ,must be collinear to X onΛ.As applications of this result,we show that the centralizer of a rescaling separating C^(1)vector field without nonhyperbolic singularity is quasi-trivial.We also proved that there is an open and dense set u⊂χ^(1)(M)such that for any star vector fieldχ∈u,the centralizer of X is collinear to X on the chain recurrent set of X.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.149.30