检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhuo Ran LI Jun Yan ZHAO Teng Fei ZHAO
机构地区:[1]Department of Mathematics,Taizhou University,Taizhou,225300,P.R.China [2]School of Mathematical Sciences,Zhejiang Normal University,Jinhua,321004,P.R.China [3]School of Mathematics and Physics,University of Science and Technology Beijing,Beijing,100083,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2024年第11期2809-2839,共31页数学学报(英文版)
基 金:Supported by National Natural Science Foundation of China(Grant Nos.12101562,12101040,12271051 and 12371239);by a grant from the China Scholarship Council(CSC)。
摘 要:In this paper,we establish Schrödinger maximal estimates associated with the finite type phaseФ(ξ_(1),ξ_(2)):=ξ_(1)^(m)+ξ_(2)^(m),where m≥4 is an even number.Following[12],we prove an L2 fractal restriction estimate associated with the surface{(ξ_(1),ξ_(2),Ф(ξ_(1),ξ_(2))):(ξ_(1),ξ_(2)∈[0,]^(2)}as the main result,which also gives results on the average Fourier decay of fractal measures associated with these surfaces.The key ingredients of the proof include the rescaling technique from[16],Bourgain-Demeter’sℓ^(2)decoupling inequality,the reduction of dimension arguments from[17]and induction on scales.We notice that our Theorem 1.1 has some similarities with the results in[8].However,their results do not cover ours.Their arguments depend on the positive definiteness of the Hessian matrix of the phase function,while our phase functions are degenerate.
关 键 词:Pointwise convergence finite type DECOUPLING reduction of dimension arguments
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7