检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematical Sciences,Huaibei Normal University,Huaibei,235000,P.R.China [2]School of Mathematics and Big Data,Chaohu University,Hefei,230000,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2024年第11期2840-2854,共15页数学学报(英文版)
基 金:Supported by the National Natural Science Foundation of China(Grant No.12201234);the Natural Science Foundation of Anhui Province of China(Grant No.2008085MA07)。
摘 要:Let B be a unit ball in R^(2),W_(0)^(1,2)(B)be the standard Sobolev space.For anyϵ>0,de Figueiredo,doÓ,dos Santons,Yang and Zhu proved the existence of extremals of a Trudinger-Moser inequality in the unit ball.Precisely,u∈W_(0)^(1,2)(B)^(sup),∫_(B)|▽u|^(2)dx≤1∫_(B)^(|x|^(2∈)e^(4π(1+∈)u^(2)dx)can be attained by some radially symmetric function u_(∈)∈W_(0)^(1,2)(B)∫_(B)with∫_(B)|▽u|^(2)dx=1.In this note,we concern the compactness of the function family{uϵ}ϵ>0 and prove that up to a subsequence uϵconverges to some function u 0 in C^(1)(B)asϵ→0.Furthermore,u_(0) is an extremal function of the supremum u∈W_(0)^(1,2)(B)^(sup),∫_(B)|▽u|^(2)dx≤1∫_(B)e^(4πu^(2)dx)Let us explain the result in geometry.Denoteω_(0)=dx_(1)^(2)+dx_(2)^(2)be the standard Euclidean metricω_(∈)|x|^(2ϵ)ω_(0)for xϵB..Then the extremal family{u_(∈)}∈>0 of the following Trudinger-Moser functionals∫_(B)e^(4π(1+∈)u^(2))dvω_(∈)under the constraint W_(0)^(1,2)(B)and∫_(B)|▽ω_∈)u|^(2)dvω_∈)≤1 is compact asϵ→0.
关 键 词:Trudinger-Moser inequality extremal function blow-up analysis COMPACTNESS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62