A hybrid method integrating Green's function Monte Carlo and projected entangled pair states  

在线阅读下载全文

作  者:He-Yu Lin Rong-Qiang He Yibin Guo Zhong-Yi Lu 林赫羽;贺荣强;郭奕斌;卢仲毅(Department of Physics,Renmin University of China,Beijing 100872,China;Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education),Renmin University of China,Beijing 100872,China;CQTA,Deutsches Elektronen-Synchrotron DESY,Platanenallee 6,15738 Zeuthen,Germany;Hefei National Laboratory,Hefei 230088,China)

机构地区:[1]Department of Physics,Renmin University of China,Beijing 100872,China [2]Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education),Renmin University of China,Beijing 100872,China [3]CQTA,Deutsches Elektronen-Synchrotron DESY,Platanenallee 6,15738 Zeuthen,Germany [4]Hefei National Laboratory,Hefei 230088,China

出  处:《Chinese Physics B》2024年第11期75-81,共7页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant No.11934020);the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302402).

摘  要:This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC.By leveraging PEPS’s proficiency in capturing quantum state entanglement and GFMC’s efficient parallel architecture,the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems.As a benchmark,we applied this approach to study the frustrated J_(1)–J_(2) Heisenberg model on a square lattice with periodic boundary conditions(PBCs).Compared with other numerical methods,our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy.This paper provides systematic and comprehensive discussion of the approach of our previous work[Phys.Rev.B 109235133(2024)].

关 键 词:projected entangled pair states Green’s function Monte Carlo frustrated J_(1)-J_(2)Heisenberg model 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象