Spatial patterns of the Brusselator model with asymmetric Lévy diffusion  

在线阅读下载全文

作  者:Hongwei Yin Shangtao Yang Xiaoqing Wen Haohua Wang Shufen Yang 尹洪位;杨尚涛;文小庆;王浩华;杨淑芬(School of Mathematics and Statistics,Xuzhou University of Technology,Xuzhou 221111,China;School of Mathematics and Statistics,Hainan University,Haikou 570228,China;Jiangxi Institute of Applied Science and Technology,Nanchang 330100,China)

机构地区:[1]School of Mathematics and Statistics,Xuzhou University of Technology,Xuzhou 221111,China [2]School of Mathematics and Statistics,Hainan University,Haikou 570228,China [3]Jiangxi Institute of Applied Science and Technology,Nanchang 330100,China

出  处:《Chinese Physics B》2024年第11期129-136,共8页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.62066026,62363027,and 12071408);PhD program of Entrepreneurship and Innovation of Jiangsu Province,Jiangsu University’Blue Project’,the Natural Science Foundation of Jiangxi Province(Grant No.20224BAB202026);the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant No.GJJ2203316).

摘  要:The formation of spatial patterns is an important issue in reaction–diffusion systems.Previous studies have mainly focused on the spatial patterns in reaction–diffusion models equipped with symmetric diffusion(such as normal or fractional Laplace diffusion),namely,assuming that spatial environments of the systems are homogeneous.However,the complexity and heterogeneity of spatial environments of biochemical reactions in vivo can lead to asymmetric diffusion of reactants.Naturally,there arises an open question of how the asymmetric diffusion affects dynamical behaviors of biochemical reaction systems.To answer this,we build a general asymmetric L´evy diffusion model based on the theory of a continuous time random walk.In addition,we investigate the two-species Brusselator model with asymmetric L´evy diffusion,and obtain a general condition for the formation of Turing and wave patterns.More interestingly,we find that even though the Brusselator model with symmetric diffusion cannot produce steady spatial patterns for some parameters,the asymmetry of L´evy diffusion for this model can produce wave patterns.This is different from the previous result that wave instability requires at least a three-species model.In addition,the asymmetry of L´evy diffusion can significantly affect the amplitude and frequency of the spatial patterns.Our results enrich our knowledge of the mechanisms of pattern formation.

关 键 词:asymmetric Lévy diffusion Turing and wave patterns Brusselator model 

分 类 号:O21[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象