Finite-time decentralized event-triggered state estimation for coupled neural networks under unreliable Markovian network against mixed cyberattacks  

在线阅读下载全文

作  者:Xiulin Wang Youzhi Cai Feng Li 汪修林;蔡有志;李峰(School of Electrical and Information Engineering,Anhui University of Technology,Maanshan 243032,China)

机构地区:[1]School of Electrical and Information Engineering,Anhui University of Technology,Maanshan 243032,China

出  处:《Chinese Physics B》2024年第11期175-183,共9页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant No.62303016);the Research and Development Project of Engineering Research Center of Biofilm Water Purification and Utilization Technology of the Ministry of Education of China(Grant No.BWPU2023ZY02);the University Synergy Innovation Program of Anhui Province,China(Grant No.GXXT-2023-020);the Key Project of Natural Science Research in Universities of Anhui Province,China(Grant No.2024AH050171).

摘  要:This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H_(∞ )performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.

关 键 词:Markov jump systems coupled neural networks decentralized event-triggered mechanism finite-time state estimation 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象