检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵常军 常贤龙 ZHAO Changjun;CHANG Xianlong(Shaanxi Weifeng Nuclear Electronics Co.,Ltd.,Xi’an 710199)
出 处:《现代制造技术与装备》2024年第11期82-84,88,共4页Modern Manufacturing Technology and Equipment
摘 要:针对实验室机械设备的主要故障类型,提出一种基于数据挖掘的在线故障检测方法。该方法通过融合多源传感器数据,提取设备状态特征,利用卷积神经网络算法识别异常模式,结合知识图谱进行故障诊断推理。实验结果表明,该方法在轴承故障诊断任务上取得了95.5%的故障分类准确率,故障原因和位置诊断准确率超过90%,为实现实验室设备的智能运维提供了新思路。Aiming at the main fault types of laboratory machinery equipment,an online fault detection method based on data mining is proposed.The method fuses multi-source sensor data to extract device state features,uses convolutional neural network algorithm to identify abnormal patterns,and combines knowledge graph to perform fault diagnosis reasoning.The experimental results show that the fault classification accuracy of the proposed method is 95.5%in the task of bearing fault diagnosis,and the fault cause and location diagnosis accuracy is more than 90%,which provides a new idea for realizing intelligent operation and maintenance of laboratory equipment.
分 类 号:TH17[机械工程—机械制造及自动化] TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15