Artificial Intelligence-Driven FVM-ANNModel for Entropy Analysis ofMHD Natural Bioconvection in Nanofluid-Filled Porous Cavities  

在线阅读下载全文

作  者:Noura Alsedais Mohamed Ahmed Mansour Abdelraheem M.Aly Sara I.Abdelsalam 

机构地区:[1]Department of Mathematical Sciences,College of Science,Princess Nourah bint Abdulrahman University,Riyadh,11671,Saudi Arabia [2]Mathematics Department,Faculty of Sciences,Assiut University,Assiut,71515,Egypt [3]Department of Mathematics,College of Science,King Khalid University,Abha,62529,Saudi Arabia [4]Basic Science,Faculty of Engineering,The British University in Egypt,Al-Shorouk City,Cairo,11837,Egypt [5]Instituto de Ciencias Matemáticas ICMAT,CSIC,UAM,UCM,UC3M,Madrid,28049,Spain

出  处:《Frontiers in Heat and Mass Transfer》2024年第5期1277-1307,共31页热量和质量传递前沿(英文)

基  金:Deanship of Scientific Research at King Khalid University,Abha,Saudi Arabia,for funding this work through theResearch Group Project underGrant Number(RGP.2/610/45);funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R102);PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia.

摘  要:The research examines fluid behavior in a porous box-shaped enclosure.The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle.Natural circulation driven by biological factors is investigated.The analysis combines a traditional numerical approach with machine learning techniques.Mathematical equations describing the system are transformed into a dimensionless form and then solved using computational methods.The artificial neural network(ANN)model,trained with the Levenberg-Marquardt method,accurately predicts(Nu)values,showing high correlation(R=1),low mean squared error(MSE),and minimal error clustering.Parametric analysis reveals significant effects of parameters,length and location of source(B),(D),heat generation/absorption coefficient(Q),and porosity parameter(ε).Increasing the cooling area length(B)reduces streamline intensity and local Nusselt and Sherwood numbers,while decreasing isotherms,isoconcentrations,and micro-rotation.The Bejan number(Be+)decreases with increasing(B),whereas(Be+++),and global entropy(e+++)increase.Variations in(Q)slightly affect streamlines but reduce isotherm intensity and average Nusselt numbers.Higher(D)significantly impacts isotherms,iso-concentrations,andmicro-rotation,altering streamline contours and local Bejan number distribution.Increased(ε)enhances streamline strength and local Nusselt number profiles but has mixed effects on average Nusselt numbers.These findings highlight the complex interactions between cooling area length,fluid flow,and heat transfer properties.By combining finite volume method(FVM)with machine learning technique,this study provides valuable insights into the complex interactions between key parameters and heat transfer,contributing to the development of more efficient designs in applications such as cooling systems,energy storage,and bioengineering.

关 键 词:ANN model finite volume method natural bioconvection flow magnetohydrodynamics(MHD) porous media 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TB383[自动化与计算机技术—控制科学与工程] O35[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象