Nanofluid Heat Transfer in Irregular 3D Surfaces under Magnetohydrodynamics andMulti-Slip Effects  

在线阅读下载全文

作  者:Mumtaz Khan Muhammad Shoaib Anwar Mudassar Imran Amer Rasheed 

机构地区:[1]Faculty of Science,Jiangsu University,Zhenjiang,212013,China [2]Department of Mathematics,University of Jhang,Jhang,35200,Pakistan [3]College of Humanities and Science,Ajman University,Ajman,346,United Arab Emirates [4]Department of Mathematics,School of Science and Engineering,Lahore University of Management Sciences,Lahore Cantt,54792,Pakistan

出  处:《Frontiers in Heat and Mass Transfer》2024年第5期1399-1419,共21页热量和质量传递前沿(英文)

摘  要:This study employs the Buongiorno model to explore nanoparticle migration in a mixed convection second-grade fluid over a slendering(variable thickness)stretching sheet.The convective boundary conditions are applied to the surface.In addition,the analysis has been carried out in the presence of Joule heating,slips effects,thermal radiation,heat generation and magnetohydrodynamic.This study aimed to understand the complex dynamics of these nanofluids under various external influences.The governing model has been developed using the flow assumptions such as boundary layer approximations in terms of partial differential equations.Governing partial differential equations are first reduced into ordinary differential equations and then numerically solved using the Runge-Kutta-Fehlberg method(RK4)in conjunction with a shooting scheme.Our results indicate significant increases in Nusselt and Sherwood numbers by up to 14.6%and 23.2%,respectively,primarily due to increases in the Brownian motion parameter and thermophoresis parameter.Additionally,increases in the magnetic field parameter led to a decrease in skin friction coefficients by 37.5%.These results provide critical insights into optimizing industrial processes such as chemical production,automotive cooling systems,and energy generation,where efficient heat andmass transfer are crucial.Buongiornomodel;velocity-slip effects;Joule heating;convective boundary conditions;Runge-Kutta-Fehlberg method(RK4).

关 键 词:Buongiorno model velocity-slip effects Joule heating convective boundary conditions Runge-Kutta-Fehlberg method(RK4) 

分 类 号:O35[理学—流体力学] TK124[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象