检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赖红[1] 任黎 黄钟锐 万林春 Lai Hong;Ren Li;Huang Zhong-Rui;Wan Lin-Chun(School of Computer and Information Science,Southwest University,Chongqing 400715,China)
机构地区:[1]西南大学计算机与信息科学学院,重庆400715
出 处:《物理学报》2024年第23期37-50,共14页Acta Physica Sinica
基 金:国家自然科学基金(批准号:61702427,62301454);重庆市自然科学基金(批准号:CSTB2022NSCQ-MSX0749,CSTB2023NSCQMSX0739);中国国家留学基金委(批准号:202306990061);西南大学2022年校级教改项目(批准号:2022JY086)资助的课题.
摘 要:量子密钥分发(quantum key distribution,QKD)技术因在确保通信安全方面的潜力而备受关注,但其在大规模网络中的应用受限于量子资源的稀缺性和低效的利用率.尤其在Ekert91协议中,尽管利用了纠缠对进行密钥生成,实际参与密钥生成的纠缠对数量有限,导致资源利用率不高.为了克服这一挑战,本文提出一种基于多尺度纠缠重整化假设(multiscale entanglement renormalization ansatz,MERA)的QKD优化方案,以提高纠缠资源的利用效率.该方案利用MERA的分层结构和多体态压缩特性,有效减少量子存储需求,并显著提升纠缠对的利用率.实验模拟显示,在相同的加密请求(1024比特)和物理条件下,与传统方法相比,本文的方案节省了124151对纠缠资源,既显著提高了资源的利用效率,又未降低密钥生成过程的安全性,有助于推动QKD技术在资源受限的环境中进一步发展和应用.Quantum key distribution(QKD)is a pivotal technology in the field of secure communication by using the principles of quantum mechanics to implement theoretically unbreakable encryption.However,QKD faces significant challenges in achieving large-scale deployment.The primary hurdle lies in the scarcity of quantum resources,especially entangled photon pairs,which are fundamental to protocols such as Ekert91.In traditional QKD implementations,only a small potion of the generated entanglement pairs contribute to generating the original key,resulting in lower efficiency and resource waste.Resolving this limitation is crucial to the advancement and scalability of QKD networks.This paper introduces an innovative approach to QKD by integrating the multiscale entanglement renormalization ansatz(MERA),a technique which is originally developed for many-body quantum systems.By utilizing MERA’s hierarchical structure,the proposed method not only improves the efficiency of entanglement distribution but also reduces the consumption of quantum resources.Specifically,MERA compresses many-body quantum states into lower-dimensional representations,allowing for the transmission and storage of entanglement in a more efficient manner.This compression significantly reduces the number of qubits required,optimizing both entanglement utilization and storage capacity in quantum networks.To evaluate the performance of this method,we conduct simulations under standardized conditions.In the simulation,a 1024-bit encryption request,an 8%error rate,an average path length of 4 hops in the quantum network,and a 95%success rate for link entanglement generation and entanglement swapping operations are assumed.These parameters reflect the real physical conditions in contemporary QKD networks.The results demonstrate that compared with traditional QKD protocols,the MERA-based approach saves 124151 entangled pairs,which is impressive.This significant reduction in resource consumption indicates the potential application of MERA in improving the efficie
关 键 词:量子密钥分发 多尺度纠缠重整化假设 资源利用率 安全性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7